

Natural Environment Research Council Institute of Geological Sciences

Mineral Reconnaissance Programme Report

A report prepared for the Department of Industry

This report relates to work carried out by the Institute of Geological Sciences on behalf of the Department of Industry. The information contained herein must not be published without reference to the Director, Institute of Geological Sciences.

D. Ostle Programme Manager Institute of Geological Sciences Nicker Hill, Keyworth, Nottingham NG12 5GG

No. 64

A mineral reconnaissance of the Dent—Ingleton area of the Askrigg Block, northern England

,

and the second s

INSTITUTE OF GEOLOGICAL SCIENCES

Natural Environment Research Council

Mineral Reconnaissance Programme

Report No. 64

A mineral reconnaissance of the Dent—Ingleton area of the Askrigg Block, northern England

J. H. Bateson, BSc, MIMM C. C. Johnson, PhD

A report prepared for the Department of Industry

er ritteren a

Mineral Reconnaissance Programme Reports

- 20 Geophysical field techniques for mineral exploration
- 21 A geochemical drainage survey of the Fleet granitic complex and its environs
- 22 Geochemical and geophysical investigations northwest of Llanrwst, North Wales
- 23 Disseminated sulphide mineralisation at Garbh Achadh, Argyllshire, Scotland
- 24 Geophysical investigations along parts of the Dent and Augill Faults
- 25 Mineral investigations near Bodmin, Cornwall. Part 1-Airborne and ground geophysical surveys
- 26 Stratabound barium-zinc mineralisation in Dalradian schist near Aberfeldy, Scotland; Preliminary report
- 27 Airborne geophysical survey of part of Anglesey, North Wales
- 28 A mineral reconnaissance survey of the Abington-Biggar-Moffat area, south-central Scotland
- 29 Mineral exploration in the Harlech Dome, North Wales
- 30 Porphyry style copper mineralisation at Black Stockarton Moor, south-west Scotland
- 31 Geophysical investigations in the Closehouse – Lunedale area
- 32 Investigations at Polyphant, near Launceston, Cornwall
- 33 Mineral investigations at Carrock Fell, Cumbria. Part 1-Geophysical survey
- 34 Results of a gravity survey of the south-west margin of Dartmoor, Devon
- 35 Geophysical investigation of chromite-bearing ultrabasic rocks in the Baltasound – Hagdale area, Unst, Shetland Islands
- 36 An appraisal of the VLF ground resistivity technique as an aid to mineral exploration
- 37 Compilation of stratabound mineralisation in the Scottish Caledonides
- 38 Geophysical evidence for a concealed eastern extension of the Tanygrisiau microgranite and its possible relationship, to mineralisation
- 39 Copper-bearing intrusive rocks at Cairngarroch Bay, south-west Scotland
- 40 Stratabound barium-zinc mineralisation in Dalradian schist near Aberfeldy, Scotland; Final report
- 41 Metalliferous mineralisation near Lutton, lvybridge, Devon
- 42 Mineral exploration in the area around Culvennan Fell, Kirkcowan, south-western Scotland
- 43 Disseminated copper-molybdenum mineralisation near Balluchulish, Highland Region
- 44 Reconnaissance geochemical maps of parts of south Devon and Cornwall
- 45 Mineral investigations near Bodmin, Cornwall. Part 2-New uranium, tin and copper occurence in the Tremayne area of St Columb Major
- 46 Gold mineralisation at the southern margin of the Loch Doon granitoid complex, south-west Scotland

- 47 An airborne geophysical survey of the Whin Sill between Haltwhistle and Scots' Gap, south Northumberland
- 48 Mineral investigations near Bodmin, Cornwall. Part 3--The Mulberry and Wheal Prosper area
- 49 Seismic and gravity surveys over the concealed granite ridge at Bosworgy, Cornwall
- 50 Geochemical drainage survey of central Argyll, Scotland
- 51 A reconnaissance geochemical survey of Anglesey
- 52 Miscellaneous investigations on mineralisation in sedimentary rocks
- 53 Investigation of polymetallic mineralisation in Lower Devonian volcanics near Alva, central Scotland
- 54 Copper mineralisation near Middleton Tyas, North Yorkshire
- 55 Mineral exploration in the area of the Fore Burn igneous complex, south-western Scotland
- 56 Geophysical and geochemical investigations over the Long Rake, Haddon Fields, Derbyshire
- 57 Mineral exploration in the Ravenstonedale area, Cumbria
- 58 Investigation of small intrusions in southern Scotland
- 59 Stratabound arsenic and vein antimony mineralisation in Silurian greywackes at Glendinning, south Scotland
- 60 Mineral investigations at Carrock Fell, Cumbria. Part 2—Geochemical investigations
- 61 Mineral reconnaisance at the Highland Boundary with special reference to the Loch Lomond and Aberfoyle areas
- 62 Mineral reconnaissance in the Northumberland Trough
- 63 Exploration for volcanogenic sulphide mineralisation at Benglog, North Wales
- 64 A mineral reconnaissance of the Dent-Ingleton area of the Askrigg Block, northern England

The Institute of Geological Sciences was formed by the incorporation of the Geological Survey of Great Britain and the Geological Museum with Overseas Geological Surveys and is a constituent body of the Natural Environment Research Council

Bibliographic reference

Bateson, J. H. and Johnson, C. C. 1983. A mineral reconnaissance of the Dent-Ingleton area of the Askrigg Block, northern England *Mineral Reconnaissance Programme Rep. Inst. Geol. Sci.*; No. 64

Printed in England for the Institute of Geological Sciences by Imediaprint

CONTENTS

SU	MMARY	1
IN	TRODUCTION	1
GE	COLOGY AND MINERALISATION	1
GE	COCHEMICAL RECONNAISSANCE	1
Dr	ainage basin reconnaissance	3
	il survey of Tow Scar area	5
	•	-
	DNCLUSIONS AND RECOMMENDATIONS	8
AC	CKNOWLEDGEMENTS	9
RF	FERENCES	9
AF	PPENDIX 1 Locational and analytical data for drainage basin reconnaissance	10
AI	PPENDIX 2 List of high anomalous stream sediment samples	13
FI	GURES	
1 2	Geology map of the Dent - Ingleton area Drainage basin map of the Dent - Ingleton area showing mineralisation and mines	2
3	in pocket Element means and ranges for stream sediments and panned concentrates	4
4	Class interval map for barium in stream sediments in pocket	•
5	Class interval map for copper in stream	
6	sediments in pocket Class interval map for lead in stream	
7	sediments in pocket Class interval map for zinc in stream sediments in pocket	
8	Class interval map for barium in panned	
0	concentrates in pocket	
9	Class interval map for copper in panned concentrates in pocket	
10	Class interval map for lead in panned concentrates in pocket	
11	Class interval map for zinc in panned	
12	concentrates in pocket Class interval map for fluoride in waters in pocket	
13	Map outlining four areas of anomalously high results in pocket	
	Soil sample sites at Tow Scar	6
12	Contour maps of Tow Scar soil geochemistry data	7
16	Geology and structure of the Tow Scar area,	·
	drawn from aerial photographs	8
TA	ABLES	
1	Mines and mineral shows in the Dent - Ingleton area	3

.

SUMMARY

The western margin of the Askrigg Block has been investigated by regional geochemical reconnaissance. This took the form of a drainage basin survey with the collection of stream sediments (306 samples), panned concentrates (149 samples), and waters (278 samples) over an area of $c.450 \text{ km}^2$. In addition, following an observation of a moss-like plant with tolerance to high levels of base metals, a soil survey was carried out on Tow Scar, 3 km to the northwest of Ingleton.

The drainage basin survey reveals no new major mineralisation though minor mineral shows have been located following investigation of some anomalous sites. The soil survey led to the discovery of minor mineralisation, which suggests that similar occurrences might exist adjacent to the Craven Fault system east of Ingleton.

INTRODUCTION

This report covers the western area of the Askrigg Block, namely the upper part of Wensleydale (west of Hawes), Widdale, Dentdale, Kingsdale and the upper reaches of the Ribble Valley (Figure 1). Generally flatlying or slightly tilted coarse sandstone of Millstone Grit age caps the higher land of the area, the highest peaks of which are Ingleborough (723 m) and Whernside (736 m). Soils range from the poorly drained peats to the very thin soils of the limestone pavement areas. The drainage system occupies broad valleys in which variable amounts of glacial and alluvial material has accumulated.

This area was selected for mineral reconnaissance for a number of reasons.

- There are mineralised areas on the Askrigg Block (e.g. Swaledale and Littondale), and a number of mineralised localities and mines are recorded within the area itself (Figure 2).
- (ii) Its margins are bounded on two sides by major fault structures both of which are associated with mineral deposits.
- (iii) Recently published work by Small (1978), and Ineson and Al-Badri (1980, 1981) suggest that the area has some potential for mineralisation.

Small (1978), in a study of mineralisation controls in the North Pennines, postulates that part of this area lies close to the source of mineralising fluids which he believes were responsible for the extensive ore-field in Wharfedale and Swaledale.

The work of Ineson and Al-Badri is summarised in two publications (1980, 1981) which discuss the data obtained from hydrogeochemical and stream sediment reconnaissance surveys. They demonstrate enhanced values for Zn and Cu in waters in the general area of the present investigation. Stream sediment data also indicate anomalous values (greater than mean plus two standard deviations) for Cu, Co and Ni in the same area. However, these authors were not able to confirm the 'zonation' of Small or recognise any pattern similar to that proposed by Dunham and Stubblefield (1944) for the Greenhow area of the Block.

GEOLOGY AND MINERALISATION

Sediments of Carboniferous age up to and including the Namurian underlie most of the area covered by this investigation (Figure 1). They rest with marked unconformity on steeply folded metamorphosed Ingletonian and Lower Palaeozoic sediments up to Silurian age. These 'basement' rocks outcrop in the valleys of the River Greta near Ingleton and the Ribble at Horton-in-Ribblesdale, and in the area adjacent to the Dent Fault NE of Sedburgh.

The base of the Carboniferous sequence is represented by the Orton Group (Dakyns and others, 1891), in which is included the major part of the most massive of the limestones in the sequence, the Great Scar Limestone, and which outcrops extensively in the valley bottoms and along the lower slopes of the fells. The upper part of the Great Scar is succeeded by a sequence of regularly alternating thin limestones, calcareous shales and sandstones which together comprise the Alston Group. The limestones, although relatively thin, are persistent and traceable throughout the area and the more arenaceous units are lenticular and much less persistent laterally. Arenaceous sedimentation becomes much more significant higher in the succesion with the sandstones and grits of the Millstone Grit Series forming the capping to the mesalike fells. Locally, minor unconformities occur at the base of this Series. The Carboniferous succession has a gentle regional dip to the NNE.

Faulting, normally of moderate throw, has been mapped throughout most of the area but there is an increase in frequency in the north. This is related to the main, approximately E-W oriented, faulting (with related mineralisation) of Swaledale some 2 km beyond the northern margin of the area of investigation. Faults mostly trend NW-NNW and have moderate displacement; disturbance in attitude of affected strata is usually minimal. The major faults that have been used to define the boundaries of the area, the Dent and Craven systems, each have considerable measurable throw and in some areas affect the adjacent rock by oversteepening and contorting of the strata.

Apart from the geochemical investigations referred to earlier, the area has not been subject to modern exploration techniques. Some geophysical data are available for the area from the published 1:625 000 scale aeromagnetic map (Institute of Geological Sciences, 1972) and also gravity data from the 1:250 000 scale Bouguer Gravity Anomaly map (Institute of Geological Sciences, 1977).

Recorded mineral locations within the area are relatively few in number. Some are known to be associated with faulting though no common regional trend is discernible. Galena, sphalerite and chalcopyrite (or the derived carbonates) are the commonly recorded minerals, with some fluorite and baryte localities also known. Gangue material is varied, calcite and quartz being the commonest minerals. Table 1 gives details of mines and mineral occurrences in the Dent - Ingleton **area**.

GEOCHEMICAL RECONNAISSANCE

As the area has a well-developed active drainage system, the regional geochemical investigation was undertaken using stream sediment, panned concentrate and water samples. The stream sediments, 306 in total, were obtained using the techniques described by Plant (1971),

·

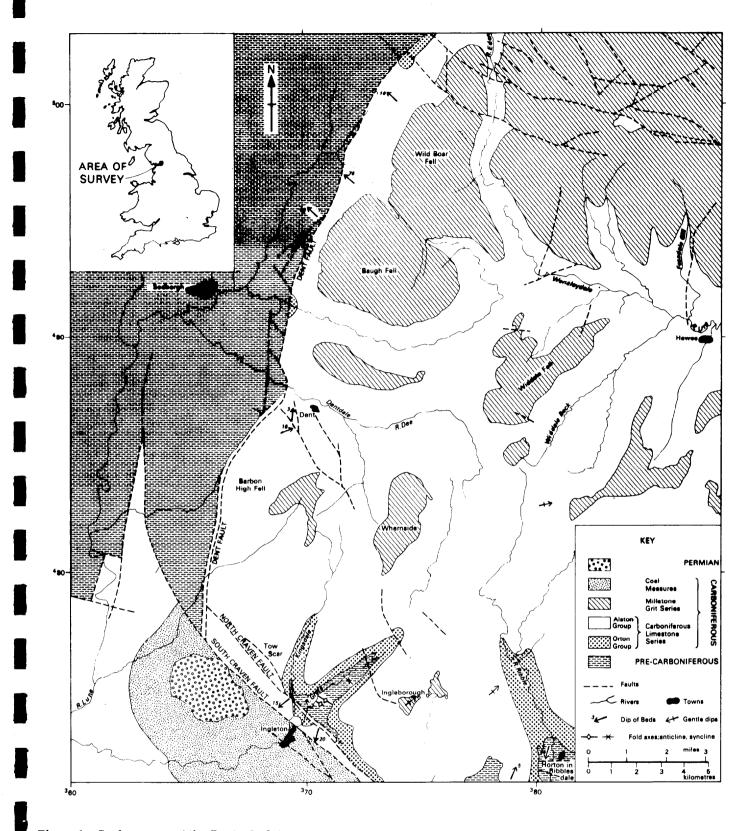


Figure 1 Geology map of the Dent - Ingleton area.

Ì

Table 1 Mines and mineral shows in the Dent - Ingleton area.

Number*	Locality	Grid Reference	Descriptiont					
1	Fossdale Gill	386 494	Disused mine. Ore from Main or Underset Limestone Gangue predominatly calcite and fluorite with rare baryte(?). Sphalerite, chalcopyrite and rare galeana					
2, 3, 4	Lover Gill	388 496	Disused mine. NNE vein with large downthrow to the NW. Barytes, calcite, fluorspar with galena.					
5,6	Turner Hill	378 493	Mineralisation found along planes (predominantly 070/66°N) in siliceous limestone (Underset Chert). Chalcopyrite in coarse quartz with secondary copper carbonates.					
7,8	Aisgill Moor	377 496	NE trending fault occupied by vein. Quartz with chalcopyrite.					
9	Hazel Gill	377 499	ENE and WNW faults occupied by veins. Main gangue barytes and calcite with chalcopyrite.					
10	Tow Scar	368 475	NNW trending calcite veins with chalcopyrite and copper carbonates. Associated with limestone containing siliceous nodules.					
11	Blea Gill	375 489	NE trending quartz vein containing chalcopyrite in Simonstone Limestone.					
12	Bardale Head	386 484	Old workings. NE vein. Chalcopyrite and galena.					
13	Wether Fell	387 486	Old workings. ENE vein. Calcite and galena.					
14, 15	Kingsdale Head	371 479	Veins. Calcite, baryte and chalcopyrite.					
16	Mossdale Head	382 491	Sheets of well-formed, yellow fluorspar with chalcopyrite occurring along bedding planes.					
17	Clouds Gill	373 499	Disused mine. Ore extracted in narrow gulleys running parallel to strike (NE) in Great Scar/ Robinson Limestone. Calcite and fluorite in veins with galena and chalcopyrite.					
18	Head of Great Sled Dale	382 499	Old workings. Quartz, baryte, fluorspar, chalcopyrite and abundant malachite.					
19	Hush Gutter	383 499	Disused mine. NE vein. Quartz, calcite, baryte, fluorite and chalcopyrite.					
20	Hull Pot	382 474	NW fault. Traces of galena, sphalerite, chalcopyrite with calcite and baryte.					
21	Beckermonds	387 480	NNE trending veins in Gayle Limestone with chalcopyrite.					
22	Southwest Dodd Fell	381 482	NE trending lead vein in Main Limestone.					
23	South Dodd Fell	384 484	NNE trending lead vein.					
24, 25	West of Ingleborough	372 474	NW to NNW trending veins. Galena, baryte and chalcopyrite.					

* Number refers to location marked on Figure 2.

t Compiled from one-inch geological map (sheets 40 & 50), Dakyns and others (1890, 1891), and observations made on location.

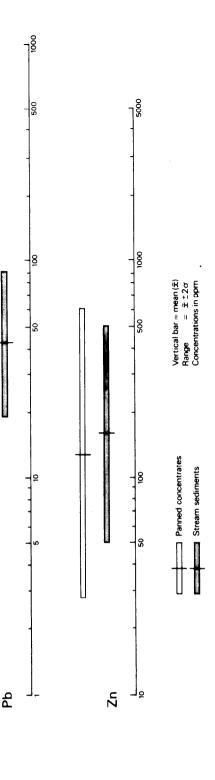
and the panned concentrates, 149 in all, by the classical gold panning method to produce about 30 g of concentrate. The stream sediments were analysed by \triangle AS techniques for Cu, Pb, Zn, Ba, Mn and Co at the commercial laboratories of Mather Research Ltd, Rothbury (though Mn and Co are not discussed in this report). The panned concentrates were analysed by XRF, at the laboratories of the Institute in London, for Ce, Ba, Sn, Pb, Zn, Cu, Ca, Ni, Fe, Mn, Ti, Sr and Zr. Additionally 278 samples of surface stream waters were analysed for F by specific ion techniques. In this report only the Ba, Pb, Zn, Cu and Sn values for the panned concentrates are used. All the data from the drainage basin reconnaissance are listed in Appendix 1.

A small area underlain by Great Scar limestone adjacent to the North Craven Fault at Tow Scar

[368 475], approximately 3 km to the NW of Ingleton, was selected as an area to be investigated by soil sampling. Interest in this area was stimulated by the report that two plant species (*Minuartia verna (L.) Hiern* and *Thalaspi alpestre*) which are characteristically tolerant to high heavy metal levels and are normally associated with the environment of old mine spoil heaps, had been identified from this locality (Dr W. Sledge, Leeds University, oral communication, June 1978).

Drainage basin reconnaissance

Data interpretation


Data from the drainage basin reconnaissance survey have been processed using the G-EXEC relational data base management system on an IBM 360/195 computer at the

ľ

ł

> > 3

8

Rutherford Laboratories, Didcot. The data are presented and interpreted in the following way:-

98 ppm

V

35.5 ppr

Ba

- 1. Locational and analytical data are listed in Appendix 1.
- 2. Element logarithmic means and ranges (range is defined as logarithmic mean <u>+</u> 2 standard deviations) are given in Figure 3 for the stream sediments and panned concentrates.
- 3. Elemental abundances are presented as class interval maps (Figures 4 - 12). Three classes are plotted - the lowest class represents the lowest 84% of the number of samples in the data set, the middle class >84% to <97.5%, and the highest class is the top 2.5%. For the fluoride in water data classes were chosen arbitrarily as the majority of values were uniformly low.
- 4. The Sn data for the panned concentrate samples have been used to indicate artificial contamination - values in excess of 88 ppm Sn (the 92.5% population interval) are regarded as being indicative of contamination. Having identified high Sn samples, contamination has been further investigated by optical examination of the concentrate samples. Results of such examination are indicated in Appendix 2.

Results

From the data derived from the stream sediments and panned concentates, four areas can be defined, each of which contains a number of anomalously high values (see Figure 13).

Area 1, the largest of the areas, lies astride the Dent Fault and may be considered a composite of two

adjacent drainage basins, the most northerly containing streams flowing from the known, and exploited, mineralisation at Cold Keld [3735 4995]. In the north the area is underlain by Carboniferous sediments, but to the southwest, west of the Dent Fault, there are sediments and volcanics of Ordovician and Lower Silurian age.

High barium values identify the mineralisation at Cold Keld and anomalously high levels of Ba, Cu, and Zn are found in Taythes Gill [370 495] flowing over the Lower Palaeozoic into the River Rawthey. Although available published literature does not indicate the presence of any mineralisation from this well-faulted area drained by Taythes Gill, the Dent Fault is represented by a zone of crushing which, where it crosses the Gill, is up to 10 m wide and which contains a considerable amount of baryte as a cementing material. Grains of sphalerite have also been noted and the presence of copper minerals is indicated by blue and green carbonates. Evidence of mineralisation is also seen in the predominantly shale and mudstone succession of the Ordovician Ashgill Series as calcite and quartz veining.

Area 2 which lies to the east of Area 1, includes tributaries flowing to the River Eden and is underlain by rocks of the Carboniferous succession varying from the carbonate/shales of the Alston Group to the grits and sandstones of the overlying Namurian. High copper values are common here, up to twice the calculated mean for the sediments, reflecting the presence of chalcopyrite in a pair of mineralised NE/SW faults. Anomalously high levels of barium are recorded in the panned concentrates with one value in excess of 12 % Ba (Hazel Gill 3777 4998) derived from a mineralised fault that crosses the catchment of this stream.

In Area 3 at Fossdale [386 494] high Pb, Ba and Zn levels are found in the stream sediments and panned concentrates, which are attributed to an exploited mineralised fault zone. In the stream sediments, the values for Pb, Ba and Zn are 10, 8 and 4 times the mean respectively. Values in the panned concentrates are high: barium up to 10.8 % and lead up to 1.9 %. Zinc, with values over 900 ppm, is seven times higher than the mean.

A further group of samples with anomalous values is located in streams draining from Barbon High Fell [367 482] (Area 4). Here the bedrock is composed of Carboniferous sediments, chiefly carbonates, faulted against the Upper Silurian to the west. Values for Cu in the stream sediments are generally only at the mean while lead attains levels about twice mean and zinc up to four times. Barium is also generally higher than background with a maximum of 540 ppm Ba. A maximum value of 0.7 % Ba is recorded from one of the sites in a panned concentrate [3662 4837], together with 488 ppm Pb and 1896 ppm Zn. There are no reported occurrences of mineralised veins and a more detailed examination of the outcrops revealed only minor occurrences of calcite, occupying joints and occasional bedding planes. Pyrite, both as discrete cubes and forming larger irregular patches, was observed in some of the limestones. A thin coal, stratigraphically close to the top of the Alston Group, has been worked in a number of places within this catchment.

The enhanced values for Ba, Pb and Zn in Area 4 may be accounted for by the distribution of very minor amounts of baryte, galena and sphalerite associated with the minor veining and joint fillings, or they may be due to the lithological change from mainly carbonate rocks in the Carboniferous sequence to the shales and mudstones of the Silurian which carry higher values of these elements (Levinson, 1974).

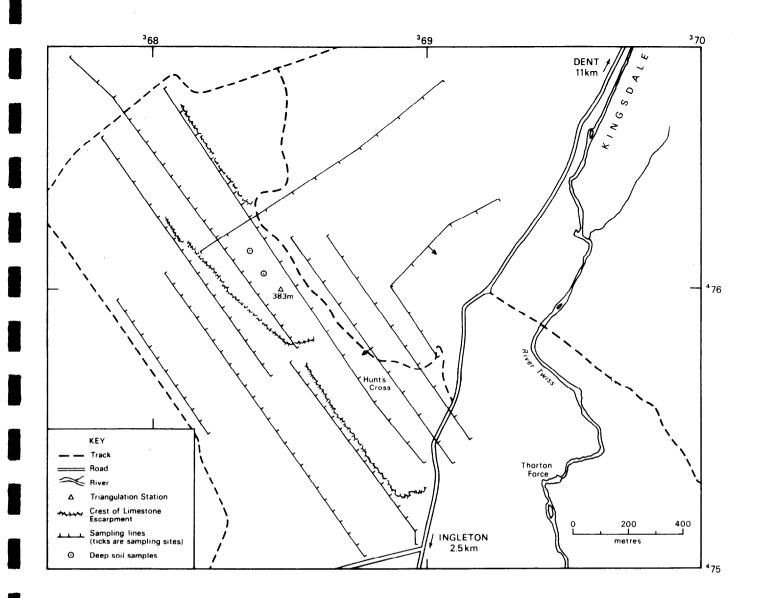
There are isolated sample anomalies which do not produce an obvious pattern outside the four areas described above. Some can be related to known minor mineralisation, and others identified fault structures. As the incidence of artificial contaminants and high content of Sn is small, it is concluded that high metal values in isolated samples reflect the presence of local minor mineralisation. A table of anomalous stream sediment sites is given in Appendix 2.

In addition to the analysis of sediments and panned concentrates 278 samples of surface waters were analysed for fluoride (Figure 12). The resulting map of the data shows that the higher fluoride values have a tendency to be associated with the recognised mineralisation at Cold Keld, River Eden, and Fossdale. Waters from two adjacent streams flowing from Rise Hill into the River Dee [370 487] also contain fluoride in the range $0.05-0.14 \mu g/ml$ as do two samples in the Gayle Beck drainage [378 480]. Neither of these very localised occurrences can be attributed to mapped geological features. The stream draining the area of Mossdale Head, where fluorite is observed in outcrop (location 16 in Table 1), contains only average amounts of fluoride.

Soil survey of Tow Scar area

In the soil survey undertaken at Tow Scar 180 samples were collected along traverse lines (Figure 14) and analysed for Cu, Pb, Zn and Ba. Organic content (losson-ignition) and pH values were also determined in order to examine any possible correlation with element distribution. A small number of deep samples were taken by means of a mechanical auger from the areas of peat in an attempt to obtain material from close to bedrock and to compare these analytical data with other soil data. The data are presented in the form of contoured maps (Figure 15). Soil development in the area sampled is variable, though generally poor. In a number of areas there is a thick development of peat.

Additional information was obtained from a study of panchromatic aerial photography of Tow Scar and the adjacent areas flown in 1969. Particular attention was paid to the recognition of fractures and joint patterns.


Soil geochemistry

Copper The highest values recorded (>75 ppm) are in three areas all of which lie along a NW trending zone coinciding with the Tow Scar feature and extending to Hunt's Cross in the southeast. The maximum value is 750 ppm Cu and this occurs just below the crest of Tow Scar at [36819 47601]. Values for copper tend to diminish both to the NE and to the SW, enhanced copper values seemingly being restricted to the block of Great Scar Limestone bounded by two main components of the North Craven Fault system. A distribution of values in a NE trend in the southeast end of the area probably reflects the effects of a NE fault situated south of Hunt's Cross. The distribution of low copper values (up to 15 ppm) within the generally anomalous zone coincides with the more extensive patches of peat developed on the limestone.

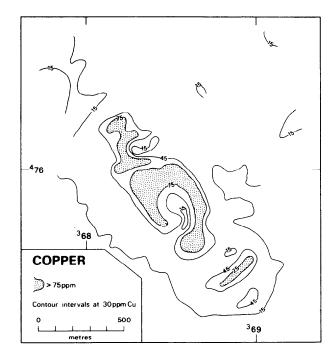
Lead High values of lead are rather more widespread than those of copper. The main NW trend is again apparent with some lower values possibly reflecting the variability in the thickness of the peat cover. Some high values of c.300 ppm Pb are located on the limestone pavement area to the NE. As with the copper there is no evidence of enhanced values on the downthrown side of the North Craven Fault. There are a number of results in excess of 2000 ppm Pb from sites at [36819 47624], [36824 47607] and [36838 47598].

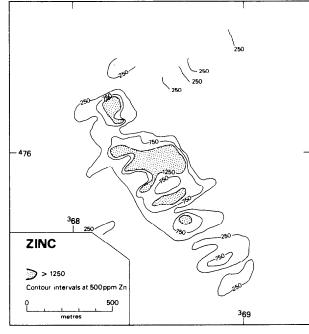
Zinc Values in excess of 1250 ppm Zn are restricted to small areas generally coincident with those relating to the copper values. Like the distribution of the copper there is no evidence of enhanced zinc values beyond the fault bounded block of Great Scar Limestone exposed on Tow Scar. Several soils, from [36819 47624] (a site also high in barium and lead) and [36858 47593], contain >5000 ppm Zn.

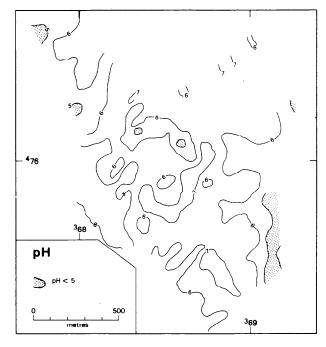
t i

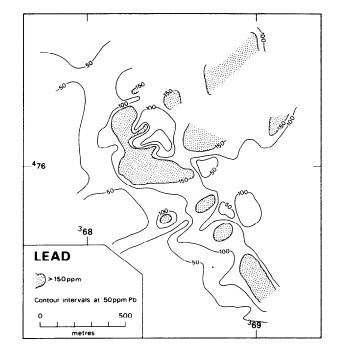
Barium Unlike the previous elements considered, some higher values for barium have been recorded from the topographically lower ground to the SW of Tow Scar from soils overlying rocks of Upper Carboniferous age. It is possible that these areas of high values relate to the poorly developed drainage away from Tow Scar. The maximum barium value (4400 ppm Ba) is associated with high lead and zinc at [36819 47624]. At [36824 47607] a value of 3000 ppm Ba is recorded at a site also high in lead.

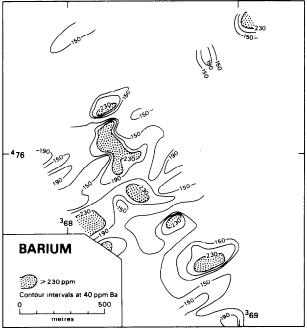
pH The pH was measured in order to determine if there was any pH control on the distribution of heavy metals. A comparison of the pH contour map with the element contour maps suggests no spatial correlation. Contrary to what might be expected, the soils on the sandstone below Tow Scar are more alkaline than the soils on the limestone. This would arise from the development of peaty gleys on glacial material and the high organic content of some of the thin poorly developed soils on the limestone plateau.


Organic content The percentage loss in weight of soils baked in a furnance at 400° C for 20 hrs is used as an indication of the organic content of the soils. It was determined in order to establish if there was any significant accumulation of metals by organic-rich soils. A comparison of the organic content contour map with the element contour maps shows no clear spatial correlation. It is suggested that the high organic contents of soils on the limestone plateau is responsible for making the soils of this area less alkaline. High organic values indicated on Figure 15 do not necessarily indicate peat development as the samples analysed were normally obtained from levels below the organic-rich surface horizons.


Deep soil samples At two sites shown on Figure 14 deep soil samples were collected in addition to surface samples (i.e. <1 metre) using a Cobra power auger. These sites were located in an area of thick peat development where low Cu, Pb, Ba and Zn had been recorded in samples collected by hand auger. At the most northerly site the power auger reached a depth of 5 m, where sandstone boulders prevented deeper sampling. No significant chemical differences were found between deep and surface soils at this locality though it is not clear how far above the limestone bedrock the deep sample was collected. Bedrock was reached within 3 m at the most southerly site, and although Cu and Pb did not show variation with depth, Zn increased from 80 ppm at the surface to 340 ppm just above bedrock. Barium was not determined on these samples.


Aerial photography


Examination of the aerial photographs shows the much jointed and faulted nature of the limestone outcrop in the vicinity of Tow Scar (Figure 16). The two main components of the Craven Fault structure are easily observed together with a number of associated subsidiary


•

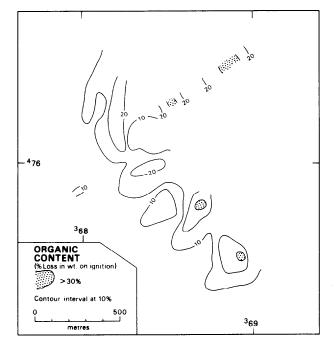


Figure 15 Contour maps of Tow Scar soil geochemistry data.

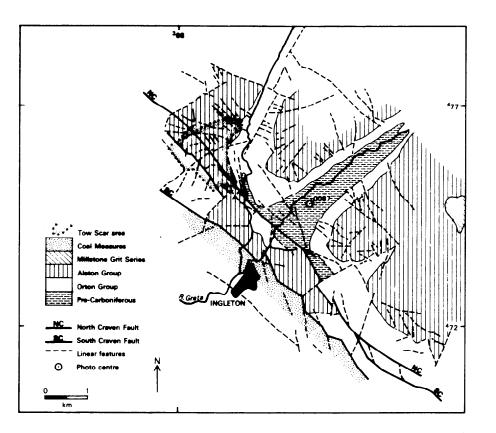


Figure 16 Geology and structure of the Tow Scar area, drawn from aerial photographs.

faults. The majority of the short linear features are undoubtedly representative of the main jointing patterns observed on the limestone pavements, their lateral extent in many instances seen to be restricted to the outcrop of the limestone. Variations in the observed density of jointing are directly related to the degree of peat development on the limestone.

Field observations and discussion of results

The soil geochemistry results indicated many sites of high base metal content in an area where no metalliferous mineralisation had been reported. An evalution of these data therefore warranted a more detailed examination of the geology of Tow Scar.

The most noticeable effect of faulting on Tow Scar is the change in the attitude of the beds of limestone from the gentle regional dip to the NNW to dips in excess of 50° towards the fault plane (i.e. to the SW). Lithologically the outcrop is reasonably uniform: massively bedded pale grey limestone with a patchily developed dolomitic facies. In one relatively small area at the northwestern end of the crop the limestone contains irregular nodules and lenses of highly siliceous material which characteristically weather to a honeycomb texture. These are aligned parallel to the lithological banding and are traceable in a zone some 45 m along strike and 5 m in width. This zone is associated with a large number of ramifying veins composed of essential calcite accompanied by chalcopyrite and copper carbonates. Elsewhere on the outcrop veining of any type is less common, but where seen it consists of calcite (frequently iron stained). The predominant direction of these veins is 330-360° but occasional other directions have been noted. A single calcite vein traceable in a NNW direction over 10-15 m attains a maximum width of 30 cm, and contains chalcopyrite. Dakyns and others (1890) refer to a fault that passes by Hunt's Cross -

"...probably without much 'throw', but marked by much dun limestone with calcite along its course".

The area of maximum observed vein occurrence 300 m NW of the triangulation station on Tow Scar coincides with high values of Cu, Pb, Zn and Ba in the soils.

The area of interest at Tow Scar, with the high soil values for Cu, Pb and Zn, is seen from the published geological map to coincide with a segment of Great Scar Limestone preserved between two main fault elements of the North Craven fault zone. The distribution of the anomalous values seems to be associated with a number of subsidiary faults which trend approximately 055°. It can also be ascertained from the aerial photography that a further area to the east, some 3 km by 1 km with similar structural controls (i.e. Great Scar Limestone bounded by major faults), can be identified and such an area presents itself as a potential target for further investigation.

CONCLUSIONS AND RECOMMENDATIONS

The drainage basin reconnaissance has not indicated any major new mineralisation. The levels of copper, lead, zinc and barium in the stream sediments and panned concentrates are similar to the values expected in such a sedimentary environment. In a reconnaissance exercise in the Lower Carboniferous area of Northumberland, the means and ranges of these elements in the stream sediments are particularly comparable (Bateson and others, 1983).

The areas showing anomalous values for one or more elements can be related in most instances to known mineralised faults. Of the exceptions, part of Area 1 (see Figure 13) may be a reflection of the more variable lithologies of the Lower Palaeozoic and the observed mineralisation associated with the Dent Fault. The anomalies in the remainder of Area 1 and Areas 2 and 3 probably represent the southern margin of the extensive mineralisation of the upper part of Swaledale. The grouping of anomalous values in Area 4 located in a largely Carboniferous environment is not explained from data indicated on any published geological map. However, in this area it is probable that the higher metal values are related to the observed minor mineralisation

and the presence of Silurian sediments in the lower part of the drainage basin.

Soil data obtained from Tow Scar indicates that part of the North Craven Fault system in this area may have acted as a passageway for mineralising fluids, the metals finding a suitable host in the Great Scar Limestone. It is of interest to note the relationship of the best developed mineralisation at Tow Scar with the limited occurrence of cherty nodules in the outcrop of the Great Scar Limestone.

The significance of the results from Tow Scar is twofold. Firstly the mineralisation was located as a result of a botanical observation and secondly it indicates a possibility of mineralisation adjacent to the North Craven Fault system to the east in areas of similar geological conditions.

The area surveyed cannot be recommended for further mineral exploration with any prospect of discovering economic deposits.

ACKNOWLEDGEMENTS

The authors thank Mr. M. McGlashan and Mr. G. Hewson, who collected most of the drainage and soil samples. The figures have been drawn by the Drawing Office, IGS Keyworth; the text prepared and formatted by Ms L. K. Waterhouse, Editorial and Publication Unit, IGS Keyworth.

REFERENCES

- BATESON, J. H., EVANS, A. D. and JOHNSON, C. C. 1983. Mineral Reconnaissance in the Northumberland trough. Mineral Reconnaissance Programme Rep. Inst. Geol. Sci., No. 62.
- DAKYNS, J. R., TIDDEMAN, R. H., GUNN, W., and STRAHAN, A. 1890. The geology of the country around Ingleborough with parts of Wensleydale and Wharfedale. Mem. Geol. Surv. Eng. & Wales. Old Series 97 SW. 103 pp. + vi.
- DAKYNS, J. R., TIDDEMAN, R. H., RUSSELL, R., CLOUGH, C. T. and STRAHAN, A. 1891. The geology of the country around Mallerstang, with parts of Wensleydale, Swaledale and Arkendale. Mem. Geol. Surv. Eng. & Wales. Old Series 97 NW. 213 pp. + vi.
- DUNHAM, K. C. and STUBBLEFIELD, C. J., 1944. The stratigraphy, structure and mineralisation of the Greenhow mining area, Yorkshire. Q.J. Geol. Soc. London. Vol. 100, pp. 209-268.
- INESON, P. R. and AL-BADRI, A. S. 1980. Hydrogeochemically anomalous areas in the Askrigg Block of the Northern Pennine Orefield. Proc. Yorks. Geol. Soc., Vol. 43 (1), pp. 17-27
- 1981. A hydrogeochemical and stream sediment survey of the Askrigg Block in the Northern Pennine orefield.
- **Proc. Yorks. Geol. Soc.**, Vol. 43 (4), pp. 357-376. INSTITUTE OF GEOLOGICAL SCIENCES 1972.
- Aeromagnetic Map of Great Britian. Sheet 2. England & Wales. 1:625 000 Series.
- 1977. Bouguer Gravity Anomaly Map (Provisonal Edition). Lake District Sheet 54°N-04°W. 1:250 000 Series.
- LEVINSON, A. A. 1974. Introduction to Exploration Geochemistry. Applied Publishing Ltd., Calgary. pp.612.
- PLANT, J. 1971. Orientation studies on stream sediment sampling for a regional geochemical survey in northern Scotland. Trans. Inst. Min. Metall. (Sect. B: Appl. earth sci.), Vol. 80, pp. 324-346.
- SMALL, A. T. 1978. Zonation of Pb-Zn-Cu-F-Ba mineralisation in part of the North Yorkshire Pennines. Trans. Inst. Min. Metall. (Sect. B: Appl. earth sci.), Vol. 87, pp. 10-13.

APPENDIX 1 Location and analytical data for drainage basin reconnaissance.

 Table 1
 Stream sediment and water samples.

Table of locational and analytical data for stream sediments and waters. For sediments the concentrations are in ppm; for waters $\mu g/ml$. Absent data are indicated by -1.00.

Sample number	Grid reference	Sediments			Waters	Sample	Grid	Sediments					Wat						
		Cu	Pb	Zn	Sr	Mn	Ва	Co	F	number	reference	Cu	Pb	Zn	Sr	Mn	Ba	Co	F
3001	37756 49652	28	45	150	110	750	280	40	0.02	3091	38290 48644	20	55	180	56	600	340	26	0.0
3002	37734 49688	30	45	190	98	1600	920	44	0.02	3092	38299 48645	18	60	170	102	1400	520	28	0.0
3003	37720 49750	20	50	150	58	1250	240	36	0.02	3093	38315 48684	20	45	130	76	750 800	440	30	0.0
3004 3005	37735 49820 37820 49830	22 30	50	320	68	3000	700	48	0.02	3094 3096	38342 4876937774 48584	20 18	60 45	140 150	80 54	650	480 420	32 26	0.0 0.0
3006	37843 49947	20	60 45	$230 \\ 250$	68 66	$2500 \\ 2050$	560 540	$\frac{42}{32}$	0.03 0.03	3097	37770 48490	26	55	130	52	1000	340	26	0.
3007	37852 49983	22	45	140	56	1200	440	32 30	0.03	3098	37788 48466	18	55	190	58	1450	340	28	Ő.
3008	37775 49978	24	60	240	96	1550	1200	32	0.08	3099	37787 48431	18	60	340	66	2500	340	40	0.
3009	37777 49785	30	45	98	62	750	200	24	0.06	3100	37768 48391	22	50	200	56	950	360	34	0.
3010	37828 49220	24	55	180	118	2800	560	36	-1.00	3101	38099 48709	20	50	210	50	1050	620	28	0.
3011	37762 49703	22	50	210	72	1050	400	34	0.05	3102	38164 48742	16	50	180	34	850	300	28	0.
3012	37603 49412	16	55	150	84	1800	380	40	0.02	3103	38171 48806	24	95	340	58	1350	680	40	0.
3013 3014	37673 49386	12	40	140	64	1400	320	28	0.02	3104	38209 48815	24 22	50 50	$130 \\ 200$	70 60	540 ∙650	940 980	$\frac{30}{32}$	0. 0.
3015	37680 49392 37740 49347	16 18	$35 \\ 40$	$\frac{170}{230}$	56 74	$\begin{array}{c}1250\\2400\end{array}$	$\begin{array}{c} 280 \\ 400 \end{array}$	28 40	0.02	$3105 \\ 3106$	38230 48794 38328 48883	18	50	240	86	1600	560	32 36	0.
3016	37726 49307	14	40	200	56	1450	360	34	0.02 0.02	3107	37710 48771	18	50	120	68	650	360	28	Ő.
3017	37766 49245	12	30	170	38	900	280	26	0.02	3108	37683 48643	22	50	190	76	900	440	32	0.
3018	37734 49230	16	55	72	52	750	220	28	0.02	3109	37650 48684	18	45	150	46	1250	300	28	0.
3019	37953 49417	16	35	120	50	650	280	22	0.02	3110	37593 48679	22	50	200	60	1000	300	32	0.
3020	37977 49350	18	30	106	66	530	200	22	0.03	3111	37748 48412	18	55	150	50	900	280	32	0.
3021	37970 49230	16	35	68	50	800	220	20	0.04	3112	37730 48500	16	85	240	70	1900	480	40	0.
3022	37915 49465	22	35	120	82	600	260	26	0.03	3113	37626 48510	26	65	170	64	700	380	36	0.
3023 3024	37900 49490 37890 49568	$\frac{22}{26}$	55	$\frac{210}{230}$	72	$1700 \\ 1700$	320	34	0.03	$3114 \\ 3115$	37702 48559 38259 49171	24 22	65 45	260 150	78 76	1100 750	460 540	38 30	0. 0.
3025	37848 49600	18	50 40	190	76 46	1600	$\frac{540}{280}$	36 32	0.04 0.03	3115	38194 49143	16	45	130	52	700	440	24	0.
3026	37787 49584	18	40	180	104	650	220	32 28	0.03	3117	38163 49121	20	45	180	74	850	640	28	0.
3027	37803 49547	24	60	160	120	750	280	30	0.02	3118	38142 49097	16	35	180	60	850	500	20	Ő.
3028	37822 49498	26	45	76	130	360	240	28	0.03	3119	38096 49064	18	50	210	72	1100	500	26	0.
3029	37859 49452	12	30	32	54	60	80	12	0.02	3120	38071 49107	12	45	120	56	950	320	18	0.
3030	38570 49089	12	30	90	26	460	180	16	0.02	3121	37479 48695	24	45	150	60	900	400	32	0.
3031	37899 49178	16	35	108	66	850	240	24	0.02	3122	37427 48682	22	45	130	52	600	360	28	0.
3036 3037	$38621 \ 49277 \ 38590 \ 49279$	18	165	350	86	1350	1200	28	0.10	3123	$37347 \ 48647 \ 38330 \ 49426$	26 24	50 55	$150 \\ 300$	46 66	$600 \\ 1100$	500 640	36 38	0. 0.
3038	38529 49320	16 18	40 40	$180 \\ 220$	46	1200	440	28	0.03	$3124 \\ 3125$	38319 49521	24	55	300	66	2200	580	40	0.
3039	38517 49416	18	50	210	58 44	$1550 \\ 1350$	580 360	36 34	0.03 0.02	3125	38240 49510	24	70	250	64	2200	540	40	0.
3040	36980 49332	16	60	250	52	1600	420	28	0.02	3127	38274 49434	20	55	240	52	2000	400	38	Ő.
3041	38000 49348	18	40	140	66	700	220	22	-1.00	3128	38269 49429	16	45	240	56	1850	400	28	Ő.
3042	38010 49322	14	35	120	36	700	160	22	0.02	3129	38303 49391	20	60	220	54	900	460	36	0.
3043	37994 49290	16	40	102	62	650	200	24	0.53	3130	38370 49292	16	50	200	52	1300	560	28	0.
3044	38086 49272	16	35	150	54	1300	220	24	0.04	3131	38042 48989	10	45	180	48	750	280	18	0.
3045	38109 49282	18	40	160	66	650	240	22	0.06	3132	37272 48285	18	45	380	52	2200	380	40	0.
3046 3047	38203 49237	14	40	170	48	1050	200	22	0.04	3133	37251 48380	24	65	260	50	1350	380	32 28	0. 0.
3048	37581 48766 37658 48853	14 10	35 35	90 50	54 40	$530 \\ 310$	260	20 18	0.03	3134	37258 48463 37355 48578	20 14	60 55	220 270	48 54	$1350 \\ 1350$	460 320	28	0.
3049	37661 48866	14	30	72	62	370	$140 \\ 240$	20	0.03 0.03	$3136 \\ 3137$	37442 48580	10	40	140	42	2000	360	18	0.
3050	37741 48881	14	40	150	80	1050	320	22	0.02	3138	37484 48582	14	45	270	42	1600	260	28	0.
3051	38470 49067	12	45	150	28	2150	240	24	0.02	3140	38634 49562	16	65	120	52	1450	620	28	0.
3052	38369 49013	16	55	250	72	1900	760	28	0.02	3141	37136 48302	16	40	260	56	1300	360	26	0.
3053	38375 48930	20	70	520	54	2100	480	54	0.02	3142	37200 48366	14	30	180	54	1150	280	22	0.
3054	38434 48976	8	70	120	24	1600	240	36	0.02	3143	37200 48392	12	35	190	50	1350	300	26	0.
3055 3056	38464 48996	12	45	170	62	1050	800	22	0.02	3144	37203 48500	20	35	200	54	1300	320	26	0. 0.
3056	38520 49028 37272 49027	$\frac{12}{16}$	60 40	$\begin{array}{c} 230\\ 210 \end{array}$	$\frac{38}{46}$	$\begin{array}{c} 2150 \\ 1300 \end{array}$	340 680	$\frac{26}{30}$	0.02	3145	37128 48508 37150 48593	12 18	30 35	$\frac{210}{220}$	42 58	1850 1200	320 340	26 24	0.
3058	37238 49005	18	45	300	50	2250	260	34 34	0.02 0.04	$3146 \\ 3147$	37110 48623	18	40	110	64	900	400	22	0.
3059	37297 48980	20	45	140	38	750	220	30	0.03	3148	36981 49313	12	35	380	68	6500	720	52	0.
3060	37349 48957	14	35	210	36	1450	240	28	0.03	3149	37050 49218	10	40	350	42	2700	280	36	0.
8061	37689 48967	12	40	70	36	420	140	18	0.03	3150	36930 49185	12	35	270	54	3600	680	32	0.
8062	37718 49009	14	35	86	38	400	180	20	0.02	3151	38642 49470	14	75	360	62	2400	840	38	0.
063	37766 49044	14	55	250	40	1350	200	30	0.02	3152	38620 49370	14	450	650	108	1950	2800	24	0
8064 8065	37810 49089 37484 48950	18 8	$\frac{35}{20}$	$130 \\ 52$	62	1100	520	26	0.03	3153	38658 49213 36953 49420	18 22	90 50	350 120	$70 \\ 310$	$1600 \\ 2350$	900 540	28 28	0.
3066	37555 48951	14	80	220	$14 \\ 38$	$370 \\ 1750$	$100 \\ 240$	12 38	0.02 0.03	$3155 \\ 3156$	36977 49420	18	45	220	90	1300	960	26	0
8067	37531 49003	14	45	410	36	2200	260	42	0.02	3157	36915 49383	20	40	220	94	1500	720	26	Ű.
3068	37572 49005	16	50	220	54	1050	220	32	0.02	3158	36851 49279	24	50	320	58	3000	720	32	0
3069	37622 49030	16	45	90	44	470	220	24	0.01	3159	36852 49270	10	40	120	20	950	380	14	0.
3070	37714 49091	16	80	110	60	1050	280	34	0.02	3160	37073 49598	20	70	600	68	1800	0 880	29	0.
8071	37375 48981	10	30	72	22	460	140	16	0.02	3161	36608 49270	24	35	88		750	360	20	0
072	37409 48929	14	40	260	42	750	220	26	0.02	3162	36700 49330	26	55	170		950	220	24	0
3073	37459 48930	10	35	150	30	950	180	20	0.01	3163	36743 49310	18	45	140	14	750	380	20	0
8074	37443 48972	20	50	160	54	800	420	30	0.02	3164	36787 49318 36830 49397	18	40	110 120	18 12	1450 850	400 340	24 24	0
3075	37146 49051	20 16	40	92 160	62 56	600 900	$300 \\ 320$	26 26	0.03 0.03	$3165 \\ 3166$	36800 49397	24 24	45 55	120		850 750	340	24	0.
3076 3077	37165 49110 37089 49099	$16 \\ 16$	40 45	$160 \\ 240$	56 40	3000	320	26 28	0.03	3166	36740 48958	10	55 35	100		500	240	14	0.
3077 3078	37026 49127	14	45 65	240 170	40	1400	280	34	0.03	3168	36661 48922	14	60	380		2850	260	22	Ő.
3079	38258 48480	20	80	310	42 120	1400	420	34 30	0.03	3169	36816 48830	8	30	92		340	160	10	Ő.
3080	38287 48568	16	50	190	82	950	400	26	0.02	3170	36833 48822	6	20	50		440	120	8	0
3081	37790 49128	12	40	54	36	300	180	18	0.00	3171	37057 49569	22	45	350		2250	2320	34	0
3082	37212 49020	16	35	94	38	340	200	20	0.01	3172	37110 49515	14	40	70	62	800	300	20	0
3083	37242 49053	14	50	98	34	650		18	0.01	3173	36941 49488	28	70	180		2550	400	30	0
3084	37184 49094	12	30	94	26	700		16	0.01	3174	36977 49568	30	45	150		2050	600	26	0
3085	36713 49152	10	30	90	16	950		16	0.01	3175	36931 49578	20	45	140		950	340	24	0
3086	36697 49097	12	30	170	14	2450	260	22	0.01	3176	36913 49551	18	45 35	94 260		410 1900	260 380	18 26	0.
3087	36880 49048	14 18	75 65	220 550	12	6500	500 960	74 74	0.01 0,02	$3177 \\ 3178$	36989 48602 37034 48668	14 20	35 40	130		800	380	20	0
2080		10	65	550	50	11000	960		0,04	3110	JIJJ4 40000	20				000	000		
3088 3089	36867 49110 38094 48657	14	45	330	50	1800	460	32	0,01	3179	37169 48728	14	25	92	30	750	240	12	0

number Politeres Cu. Pb. Zu. Sr. Min. Ba Co. F 3181 3059 365 14 45 310 310 3123 37157 48023 112 45 48 100 88 0.04 3182 37864 48023 112 45 400 16 48 1303 180 3164 180 16 48 1303 180 3164 180 16 48 1303 180 3164 180 16 48 1303 180 3164 180 16 48 180 180 180 3164 180 16	Sample number	Grid reference	Sed	iment	s		_		-	Waters	Sample	Grid	Sed	iment	s	•••	<u> </u>			Waters
3182 3687 4813 12 55 64 160 96 00 300 3254 37840 48035 18 150 64 160 180 320 1318 3754 4806 100 550 540 7754 4408 10 550 540 7750 4408 100 550 540 7750 4408 100 550 540 7750 4408 100 550 540 7750 4418 14 650 540 540 5750 4418 14 650 540 570 540			Cu	Pb	Zn	Sr	Mn	Ва	Co	F	number	reference	Cu	РЬ	Zn	Sr	Mn	Ba	Co	F
3182 3887 3897 3813 12 55 160 64 160 187 28 0.00 3184 3754 4325 18 3754 4325 18 3754 4325 18 3754 4325 18 3754 4325 18 3754 4325 18 3754 4325 18 3754 4325 12 53 22 6.03 3167 3754 4325 18 3759 4316 14 6 100 10 <td>3181</td> <td>36959 48869</td> <td>14</td> <td>45</td> <td>310</td> <td>36</td> <td>2500</td> <td>400</td> <td>40</td> <td>0.04</td> <td>3253</td> <td>37875 48025</td> <td>12</td> <td>45</td> <td>140</td> <td>48</td> <td>1350</td> <td>180</td> <td>24</td> <td>0.04</td>	3181	36959 48869	14	45	310	36	2500	400	40	0.04	3253	37875 48025	12	45	140	48	1350	180	24	0.04
3184 37324 4982 10 35 6 800 3752 37347 47649 10 150	3182	36867 48913	12	50	400	90		540												
3186 3788 48125 10 25 12 16 160 12 0.02 3255 37256 47597 12 35 52 110 160 12 0.02 3188 37527 48135 14 45 200 24 0.02 3269 37134 47353 18<												37477 47640	10							
3187 37599 48140 12 35																			28	0.02
3188 37592 4195 14 45 200 54 850 260 92 0.02 3260 37156 1735 1755 1250 1260 140 0.02 3260 37734 1756 10 155 120 140 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.04 1750 160 160 150 0.03 0.02 0.05 0.03 0.02 0.05 0.03 0.04 0.04 0.02 0.03 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03																				
3189 37827 47328 10 50 000 34 280 260 0.02 3260 37224 47368 10 12 0.03 3189 37724 47368 64 420 0.02 3367 46165 7199 14 25 59																				
3190 37733 47850 8 50 130 60 650 320 20 0.02 3262 37627 47190 14 25 40 44 480 140 120 0.03 3191 37462 47891 10 80 200 36 1364 3761 48311 14 50 60 60 320 20 0.03 3194 37345 47878 16 40 170 66 600 320 22 0.03 3266 36610 42220 12 0.03 3266 36610 4222 12 0.04 12 0.62 00 3194 37345 47864 14 41 15 66 100 500 3266 36404 427 14 40 16 20 100 3267 3644 4128 12 0.02 22 -1.00 3267 3644 4128 10 16 20 100 10 112 0.02 22 -1.00 3266 36404 4141																				
3391 37004 4807 4 20 90 15 900 150 900 152 80 150 150 900 152 80 150 160																				
3182 37462 47483 10 810 210 326 3264 3214 3314 <t< td=""><td></td><td></td><td>4</td><td>20</td><td></td><td>16</td><td>600</td><td>140</td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			4	20		16	600	140	12											
3194 3772													16	80		42	5200	300	44	
3195 37345 47845 16 40 120 56 600 220 24 0.80 3267 3660 4322 12 40 150 1150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 <																				
3198 3730 4730 47280 22 45 199 76 100 500 24 0.03 3267 36519 4522 12 10 11 1550 100 <																				
3197 37452 47850 18 40 220 34 1400 540 20 0.03 3268 36355 5002 72 8 500 100 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 0.00 12 10 10 100 10 100 10 100 10 100 16 100 10 100 14 100 10 100 10 100 <th100< th=""> 100 100 100</th100<>																				
3199 37880 47880 4 20 82 14 40 8 0.03 3269 36401 4877 14 40 000 12 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 22 000 2000 22 000 2000 22 000 2000 22 000 22 000 22 000 22 000 22 000 22 000 22 000 22 000 22 000 22 000 23 2373 36644 4818 12 45 150 360 66 60 22 000 23 2373 36644 4813 14 150 16 66 16 60 16 60 16 60 16 66																				
3200 37910 47610 47639 4 15 66 12 330 160 8 0.03 3270 36441 47872 18 45 260 12 2000 200 200 200 3773 36441 48188 12 50 220 44 800 200 22 0.02 3201 37654 48188 12 50 220 44 800 200 22 0.02 3201 37654 48188 12 50 220 44 800 200 22 0.02 3201 36764 48166 14 105 160 66 000 300 4818 12 5635 48124 14 55 100 16 6.0.02 3207 36204 48124 14 55 10 16 60.02 3207 36204 48124 14 50 10 11 100 18 0.02 3211 3765 3630 48124 14 50 18 12 150 160 16 0.02 3214 <t< td=""><td></td><td></td><td>4</td><td>20</td><td>82</td><td>14</td><td>240</td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			4	20	82	14	240		8											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.03	3270	36441 48772								
3203 37673 47441 16 35 130 38 370 300 20 0.02 3223 36763 4963 12 50 230 38 1100 140 24 -1.00 3204 35804 48473 14 35 66 76 0.02 3275 36484 47955 50 50 300 42 1700 840 44 -1.00 3204 36894 48660 14 00 540 30 0.02 3277 36232 48124 14 15 120 10 750 160 16 0.02 3200 36804 48661 14 00 200 24 0.02 3277 36230 48371 10 140 160 160 18 1.00 150 12 100 140 160 100 12 100 150 12 100 150 12 100 150 160 100 160 160 100 150 160 100 150 160 1																				
3244 37730 47539 10 50 150 46 350 30 150 36 150 36 150 36 150 36 150 36 150 36 150 36 36 150 36 36 150 36 36 16 16.0.22 3277 36272 48124 20 10 140 12 100 160 16 0.0.23 3277 36272 48124 14 55 120 10 150 160 16 0.0.23 3278 36204 48359 18 40 130 14 120 160 18 0.60 18 0.60 14 0.02 3278 36404 4835 18 40 130 14 120 160 18 0.02 220 20 0.01 3214 33753 47518 833 170 160 12 0.02 3284 36436 4845 10 120 160 18 1.60 160 18 1.60 18 160 160 160																				
$ \begin{array}{c} 3206 \\ 3204 \\ 3204 \\ 3204 \\ 3693 \\ 48650 \\ 14 \\ 14 \\ 15 \\ 14 \\ 16 \\ 14 \\ 16 \\ 14 \\ 16 \\ 14 \\ 16 \\ 14 \\ 16 \\ 14 \\ 16 \\ 14 \\ 16 \\ 14 \\ 16 \\ 12 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17$																				
3207 38913 48560 14 105 180 60 3900 360 48 0.02 3277 38274 4124 15 100 100 10 11 1000 160 16 0.02 3207 38204 48660 14 60 500 66 4600 280 44 0.02 3277 38204 48371 12 00 100 1																				
3200 36004 48660 14 60 90 66 4600 200 3278 36200 48371 20 01 100 100		36913 48560																		
36852 48851 16 35 110 36 1400 200 24 0.02 3279 36300 48371 20 40 190 10 150 20 22 0.01 3213 37926 47533 12 30 120 48 950 260 14 0.02 3281 36304 48758 16 40 180 12 150 160									30	0.02			14	55		10	750		16	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
3213 37952 47533 12 30 120 48 950 400 0.02 3281 36345 48758 16 40 180 12 1050 140 16 0.01 3216 36708 48391 12 50 420 44 3000 340 24 0.02 3283 4819 12 35 88 10 1000 160 18 -1.00 3217 36704 48420 16 65 280 640 2286 37905 47921 6 15 80 1000 160 18 -1.00 3220 36804 48422 16 45 200 36 1550 300 24 0.02 3287 37804 4781 6 15 300 10 0.02 3287 37834 47802 14 40 250 140 18 -1.00 3223 37834 4931 14 35 26 150 160 150 14 100 250 18 0.01																				
3215 36622 42836 24 55 250 42 1950 12 1050 120 1650 180 -1.00 3217 36713 4380 20 50 320 74 1500 280 284 37750 47920 6 15 80 16 1000 100 100 0.02 3218 36794 4420 16 65 280 54 5400 440 50 5200 6 15 80 16 1000 100 0.02 32219 36730 44843 16 80 420 16 15 340 18 0.01 3287 37830 47881 14 40 550 140 18 0.02 3287 37830 47881 14 10 550 160 160 16 1.00 300 26 -1.00 3224 37395 47812 14 350 710 160 160 16 1.00 300 26 -1.00 3224 37394 47812 14																				
32163670848391125042044300034024 0.02 328335204815123578101001601610100.0232173673044801665260640540.02328437750479314301664450024018-1.0032203663044402164500400540.023286378234783161534301108060.02322136759445901240150481250340180.013287378304781161534301108060.02322136759445911240150481250340180.013288365444788214402501451030026-1.003223373954931143572484001360180.00329136339471151425761075.0180160																				
3217 36713 48380 20 50 320 74 1500 280 284 37750 47920 6 15 80 16 1000 100 1.02 3218 36794 4463 16 80 420 50 5200 400 50 0.02 3286 37905 47923 4 30 160 40 4500 240 18 -1.00 3220 36690 44929 16 45 200 56 200 440 38 0.01 3288 36454 47802 14 40 250 14 510 300 26 -1.00 3223 37395 4931 14 35 72 440 38 0.02 3280 3634 4715 14 25 120 16 16 100 16 -1.00 3224 37294 4931 14 55 180 16 150 40 30 0.01 3294 3792 4785 4785 4785 4785 4785 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
3219 36730 48463 16 80 420 50 5200 400 50 0.02 3286 37905 47923 4 30 160 40 4500 240 18 -1.00 3221 36769 48599 12 40 150 48 150 340 18 0.012 3288 36454 47822 14 40 250 10 1450 160 66 -1.00 3222 37354 49311 14 35 72 48 400 1360 120 36339 47715 14 25 76 10 750 180 18 0.02 3224 37395 49914 10 55 120 58 650 1360 20 0.02 3293 37972 47826 10 35 280 14 1200 200 26 0.01 3294 3772 10 35 240 150 150 66 16 -1.00 3224 37104 49790 30 50		36713 48380	20	50	320	74	1500	280	28	0.02					80					
3220 36600 48492 16 45 200 36 1950 300 24 0.02 3287 37830 47941 6 15 34 30 110 80 6 0.02 3221 36763 45840 20 50 320 58 2700 440 38 0.02 3289 36374 47802 12 25 120 10 1450 160 16 -1.00 3223 37395 49931 14 35 72 48 400 1360 20 3291 36340 4840 60 152 280 141 1200 200 226 33792 47836 6 25 00 56 225.0 340 20 0.02 3226 37074 4790 30 50 150 300 240 25 3777 7756 6 152 24 900 140 14 -1.00 3233 <													4	20					10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
3224 37299 49914 10 55 120 58 650 1360 20 0.05 3292 37850 47836 6 25 200 56 2250 340 20 0.02 3226 36929 49682 26 55 180 16 1150 300 26 0.01 3293 37972 47826 10 35 280 40 1850 760 20 0.02 3227 37000 49790 30 16 1550 440 30 0.01 3294 37922 47732 10 35 240 150 1550 660 18 -1.00 3229 37137 49776 20 45 270 84 1550 340 32 0.01 3296 37172 48081 16 45 170 50 320 140 16 -1.00 3231 37414 49508 32 40 150 50 700 280 22 0.02 3300 37200 479907 26 <td></td>																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3224	37299 49914			120															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			32	40	150	50	700	280	22											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													26						20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3238	38030 48198	14	35	160	70	570	240	20											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14					180	20	0.01										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
3243 37960 48228 12 40 160 62 1250 200 22 0.02 3312 37120 47960 16 80 290 28 1000 440 28 0.02 3244 37932 48214 6 30 190 28 1600 140 16 0.02 3313 36758 47637 6 20 70 42 420 120 10 -1.00 3245 38048 48523 12 40 180 80 1300 220 20 0.02 3314 36646 47597 10 30 160 46 2450 240 0.02 3246 37513 47677 6 25 180 20 1750 140 26 0.01 3315 36689 47510 14 30 60 50 570 240 8 0.02 3247 37542 47720 20 40 280 96 1450 340 36 0.02 3317 36730 47427																				
3244 37932 48214 6 30 190 28 1600 140 16 0.02 3313 36758 47637 6 20 70 42 420 120 10 -1.00 3245 38048 48523 12 40 180 80 1300 220 20 0.02 3314 36646 47597 10 30 160 46 2450 240 20 0.02 3246 37513 47677 6 25 180 20 1750 140 26 0.01 3315 36689 47562 4 5 24 26 120 60 8 0.02 3247 37542 47720 20 40 280 96 1450 340 36 0.02 3316 36768 47510 14 30 60 50 570 240 18 -1.00 3248 37083 47492 8 20 76 20 370 80 8 0.02 3317 36730 47427<																				
3245 38048 48523 12 40 180 80 1300 220 20 0.02 3314 36646 47597 10 30 160 46 2450 240 20 0.02 3246 37513 47677 6 25 180 20 1750 140 26 0.01 3315 36689 47562 4 5 24 26 120 60 8 0.02 3247 37542 47720 20 40 280 96 1450 340 36 0.02 3316 36768 47510 14 30 60 50 570 240 18 -1.00 3248 37083 47492 8 20 76 20 370 80 8 0.02 3317 36730 47427 10 30 46 64 550 340 16 0.02 3249 37002 47384 10 35 120 22 700 140 14 0.02 3318 36706 47429 16 </td <td></td>																				
3246 37513 47677 6 25 180 20 1750 140 26 0.01 3315 36689 47562 4 5 24 26 120 60 8 0.02 3247 37542 47720 20 40 280 96 1450 340 36 0.02 3316 36768 47510 14 30 60 50 570 240 18 -1.00 3248 37083 47492 8 20 76 20 370 80 8 0.02 3317 36730 47427 10 30 46 64 550 340 16 0.02 3249 37002 47384 10 35 120 22 700 140 14 0.02 3318 36706 47427 10 30 46 64 550 340 16 0.02 3250 37070 47258 10 30 74 48 900 140 16 0.02 3319 36853 47378																				
3247 37542 47720 20 40 280 96 1450 340 36 0.02 3316 36768 47510 14 30 60 50 570 240 18 -1.00 3248 37083 47492 8 20 76 20 370 80 8 0.02 3317 36730 47427 10 30 46 64 550 340 16 0.02 3249 37002 47384 10 35 120 22 700 140 14 0.02 3318 36706 47429 16 50 70 46 1850 180 20 -1.00 3250 37070 47258 10 30 74 48 900 140 16 0.02 3319 36853 47378 6 15 40 22 210 140 8 0.03 3251 37910 48102 8 50 1450 140 20 0.06 3322 37509 47275 12 35 </td <td>3246</td> <td>37513 47677</td> <td>6</td> <td>25</td> <td>180</td> <td>20</td> <td>1750</td> <td>140</td> <td></td>	3246	37513 47677	6	25	180	20	1750	140												
3249 37002 47384 10 35 120 22 700 140 14 0.02 3318 36706 47429 16 50 70 46 1850 180 20 -1.00 3250 37070 47258 10 30 74 48 900 140 16 0.02 3319 36853 47378 6 15 40 32 210 140 8 0.03 3251 37910 48102 8 45 160 50 1450 140 20 0.06 3322 37509 47275 12 35 210 84 1200 240 22 0.02											3316	36768 47510	14	30	60	50	570	240		-1.00
3250 37070 47258 10 30 74 48 900 140 16 0.02 3319 36853 47378 6 15 40 32 210 140 8 0.03 3251 37910 48102 8 45 160 50 1450 140 20 0.06 3322 37509 47275 12 35 210 84 1200 240 22 0.02																				
3251 37910 48102 8 45 160 50 1450 140 20 0.06 3322 37509 47275 12 35 210 84 1200 240 22 0.02																				
											0020		*1	10	100	54		220	20	0.04

;

Table 2 Panned concentrates

Table of panned concentrate data for barium, lead, zinc, copper, manganese and tin. With the exception of sample numbers 3330 and 3331, for locational data refer to Table 1. Concentrations in ppm. Absent data are shown as 0 and results below the detection limit are given as 1.

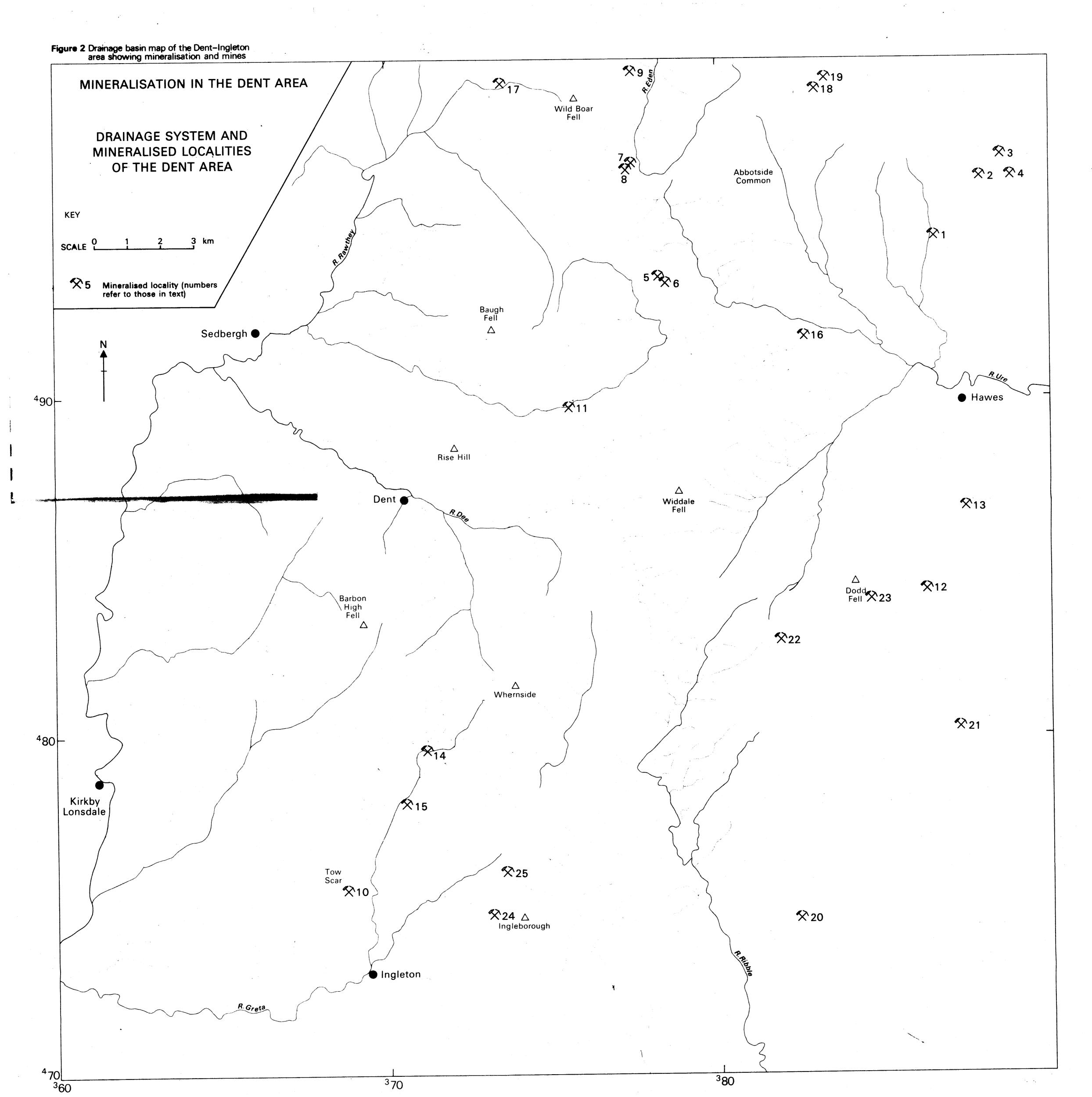
number	Ba	Pb	Zn	Cu	Mn	Sn	Sample number	Ba	Pb	Zn	Cu	Mn	Sn
3004	11000	33	152	33	910	3	3168	316	33	196	16	540	
3008	120300	71	120	74	380	10	3170	118	86	62	17	240	16
3009	586	330	75	91	370	238	3171	43600	103	2823	221	2940	1
3010	4239	450	50	686	320	333	3173	259	59	156	44	740	9
3011	4057	119	272	52	1220	17	3174	2482	99	363	90	2520	14
3015	1464	72	163	59	510	180	3175	490	28	142	23	420	1
3022	749	170	`157	34	490	45	3178	6502	231	163	55	1230	21
3030	388	35	51	8	130	64	3179	580	32	58	255	320	8
3031	2092	49	109	7	460	1	3180	562	258	50	10	190	48
3037 3039	2074 2038	22	87	32	370	1	3181	1703	267	154	. 20	380	262
3039	2038 8762	58 340	230 306	14 99	970	2	3182	705	56	133	15	620	1
3040	192	340 90	300	99 34	1910 190	3 2	3184	1797	90	209	50	240	7
3046	429	133	211	57	220	12	3185 3186	552	58	206	8	190	1
3047	1938	45	93	48	940	12	3186	645 762	53 18	$\begin{array}{c} 232\\121 \end{array}$	33 12	400 290	1 5
3050	13700	142	148	31	440	2	3188	681	11	297	5	180	1
3055	3569	13	70	5	150	ĩ	3189	364	27	172	15	320	1
3057	42600	16	89	20	400	1	3190	2818	534	230	37	200	1
3061	236	23	104	81	140	1	3192	6113	65	343	109	370	4
3062	294	36	235	52	390	5	3193	104	143	42	9	390	3
3063	367	28	125	259	240	4	3194	184	140	91	3 7	200	9
3064	4686	31	139	15	460	4	3195	2111	30	100	17	490	1
3067	600	9	120	2	440	6	3196	301	98	102	22	240	31
3069	1850	27	271	7	180	4	3197	2714	28	84	28	360	17
3073	95	9	57	204	310	1	3199	49	61	42	4	100	40
3074	5839	29	106	34	860	26	3200	490	23	61	3	250	2
3075	555	29	69	15	1320	21	3204	110	10	26	2	50	1
3076	952	367	93	6	300	9	3207	105	14	34	5	200	7
3077	187	266	58	22	340	68	3211	121	47	169	11	650	22
3079	1168	138	239	23	460	1	3213	173	9	40	4	190	6
3082	288	27	57	8	180	10	3215	7472	389	1896	58	1270	1
3083	901	729	104	153	620	1213	3216	1543	27	178	9	920	1
3084	517	225	72	14	600	97	3219	478	42	222	7	1600	5
3088 3089	2095 1386	49 16	203	28	1460	25	3222	603	31	281	25	1470	1
3092	836	148	153 150	6 11	260	4	3225	21200	237	151	32	970	31
3096	618	25	93	29	360 310	183 5	3226	532	35	152	28	550	2
3098	208	2.5	53 74	29 7	310	1	3227	6881	261	380	181	1530	39
3105	27900	44	144	26	730	2	$3228 \\ 3229$	1781	172	203	123	1220	75
3106	21300	45	126	30	870	14	3230	3515 3269	25 74	203 297	13	1460 150	7 20
3107	242	39	61	13	300	3	3232	1217	22	297 99	17 11	500	
3109	2376	48	137	26	1030	7	3235	38400	22 34	237		1880	1
3117	2678	23	81	17	300	1	3235	38400 444	34 20	237 144	24 6	1880 540	1 2
3120	717	21	73	12	330	2	3240	386	46	163	10	440	50
3121	2676	237	107	42	920	$1\overline{3}$	3240	2065	165	160	30	560	50
3124	8005	54	215	23	920	1	3243	326	25	126	11	1610	1
3129	2489	48	191	127	660	1	3244	802	66	142	10	400	1
3130	5352	60	195	40	1100	41	3247	12501	89	163	84	550	1
3131	235	8	56	2	140	1	3249	196	43	77	22	220	23
3133	11500	1129	154	225	730	22	3250	33	122	86	16	350	3
3136	691	20	131	11	930	1	3251	156	15	42	1	220	1
3138	425	25	170	7	570	2	3253	129	13	88	15	240	1
3142	6303	189	229	188	1260	3	3254	148	29	67	9	600	2
3144	4462	132	688	91	780	2	3255	4243	225	118	42	300	1
3146	2521	329	450	41	460	192	3256	257	281	124	9	240	10
3148	1862	38	256	10	1220	2	3257	133	22	38	6	80	6
3150	9668	88	162	36	1540	1	3258	28	46	19	3	60	6
3152	108700		915	140	1210	4	3260	808	22	50	6	110	7
3153	24400	2173	656	75	1690	8	3263	395	41	614	19	1980	1
3157	15800	231	576	208	1930	71	3266	1482	488	671	46	5560	2
3158	13700	321	227	64	7310	287	3272	498	28	126	5	350	1
3159	1860	222	93	33	980	88	3274	1134	36	82	13	740	1
3161	1298	95	130	94	360	4	3281	605	91	271	72	610	8
3162 3164	989	40	161	56	410	4	3284	197	35	100	29	440	46
	334	95	117	35	680	11	3285	2628	23	80	5	230	1

ι.

Sample number	Ba	Pb	Zn	Cu	Mn	Sn
3290	376	16	85	13	250	
3291	452	2369	293	156	780	503
3292	1650	31	235	8	450	1
3293	20800	39	173	41	520	42
3298	5437	31	158	30	480	1
3299	341	28	161	11	870	1
3302	678	30	243	22	810	6
3305	91	21	157	8	490	4
3306	8257	66	163	26	830	1
3308	86	15	65	18	120	8
3312	18200	40	102	296	310	1
3314	228	34	103	10	1140	7
3315	48	6	16	1	80	1
3317	175	95	40	34	1510	5
3319	86	326	77	21	160	114
3322	168	22	79	7	170	5
3223	113	19	62	10	230	4
3330*	2483	24	104	422	370	1
3331*	101200	2076	188	71	1550	1

* Grid reference for sample 3330 is [38261 49177]; for 3331 [37284 49929].

APPENDIX 2


List of high anomalous stream sediment samples

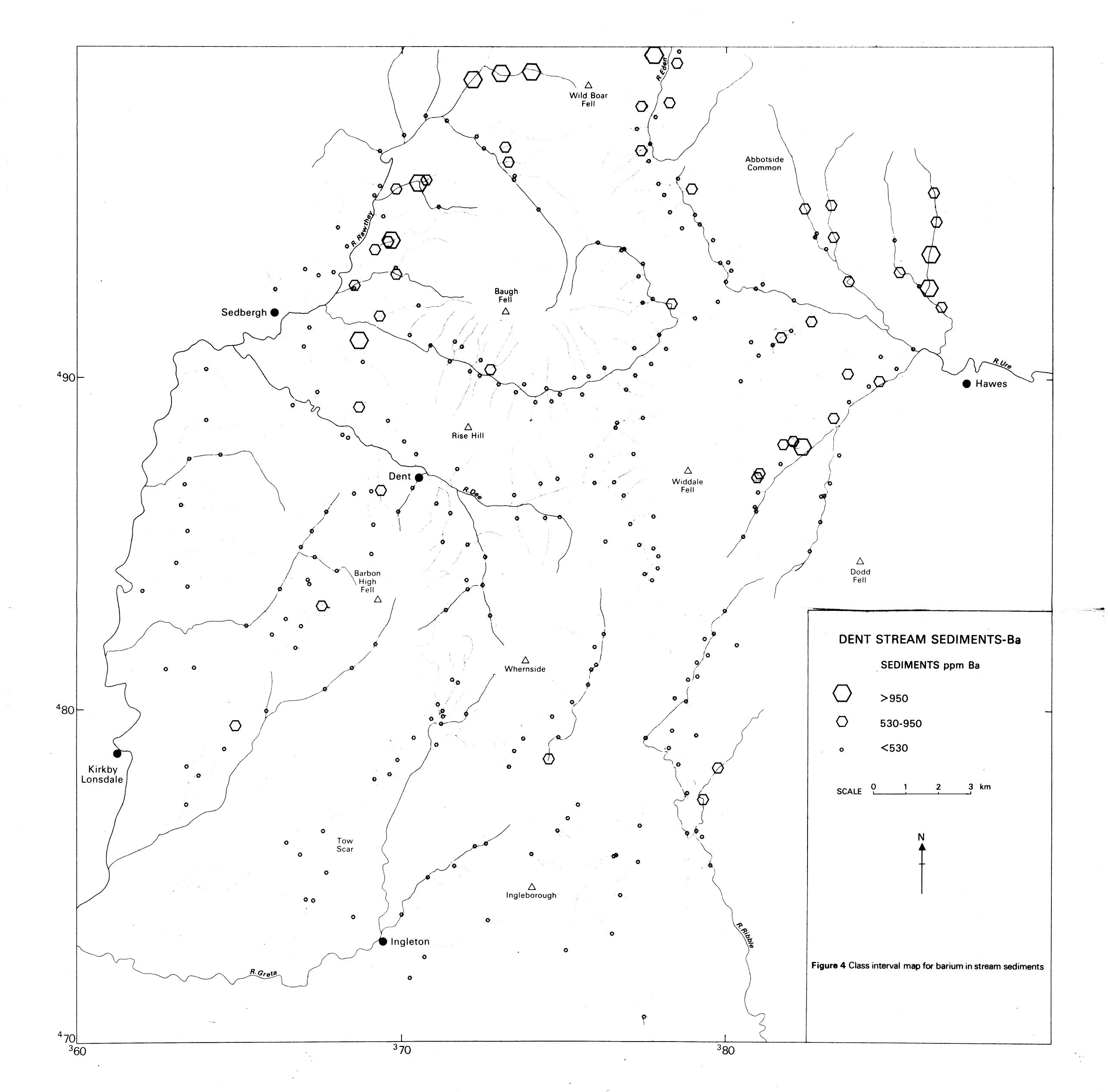
Sample number	Ba	Pb	Zn	Cu	Grid reference
HBC 3152	*	*	*	-	38620 49370
HBC 3036	*	*	-	-	38621 49277
HBC 3088	*	-	*	-	36867 49110
HBC 3262	-	*	*	_	36672 48185
HBC 3263	-	*	*	-	36691 48250
HBC 3291 †	-	*	-	*	36340 48540
HBC 3001	-	-	-	*	37756 49652
HBC 3002	-	-	-	*	37734 49688
HBC 3005	-	-	-	*	37820 49830
HBC 3009† HBC 3173	-	-	-	*	37777 49785
HBC 3173	-	-	-	*	36941 49488
HBC 3174	-	-	-	*	36977 49568
HBC 3227	-	-	-	*	37000 49730
HBC 3228			-	*	37074 49790
HBC 3231	-	-	-	*	37418 49508
HBC 3275	-	-	-	*	36488 47955
HBC 3066	-	*	-	-	37555 48951
HBC 3070	-	*	-	-	37714 49091
HBC 3079	-	*	-	-	38258 48480
	-	*	-	-	38171 48806
HBC 3103 HBC 3112	-	*	-	-	37730 48500
HBC 3153	-	*	-	-	38658 49213
HBC 3192	-	*	-	-	37462 47983
HBC 3207	-	*	-	-	36913 48560
HBC 3219	-	*	-	-	36730 48463
HBC 3259	-	*	-	-	37158 47535
HBC 3312	-	*	-	-	37120 47960
HBC 3053	-	-	*	-	38375 48930
HBC 3160	-	-	*	-	37073 49598
HBC 3209	-	-	*	-	36904 48660
HBC 3264	-	-	*	-	36751 48317
HBC 3266	-	-	*	-	36600 48229
HBC 3008	*	-	-	_	37775 49978
HBC 3105	*	-	-	-	38230 48794
HBC 3156	*	-	-	-	36977 49420
HBC 3171	*	-	-	-	37057 49569
HBC 3224	*				37299 49914
HBC 3225	*	_	-		37217 49898
					0.811 10000

 in the element column indicates an anomalous level of that element present in the stream sediment sample: Ba >950 ppm
 Pb >80 ppm
 Zn >450 ppm
 Cu >28 ppm

* sample suspected of being contaminated (deduced from high Sn found in panned concetrate from the same site and examination of concentrate sample)

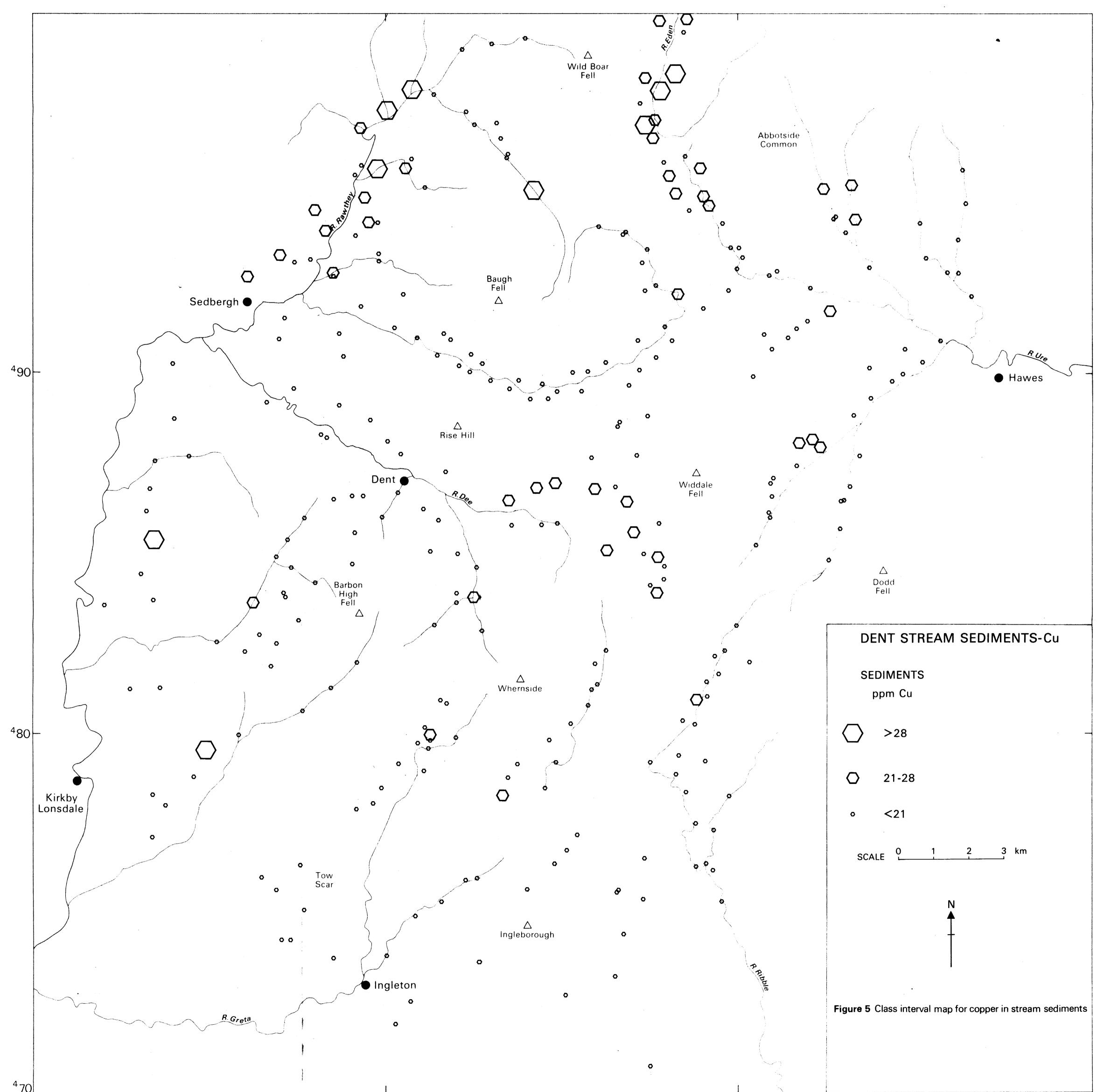
.

³70

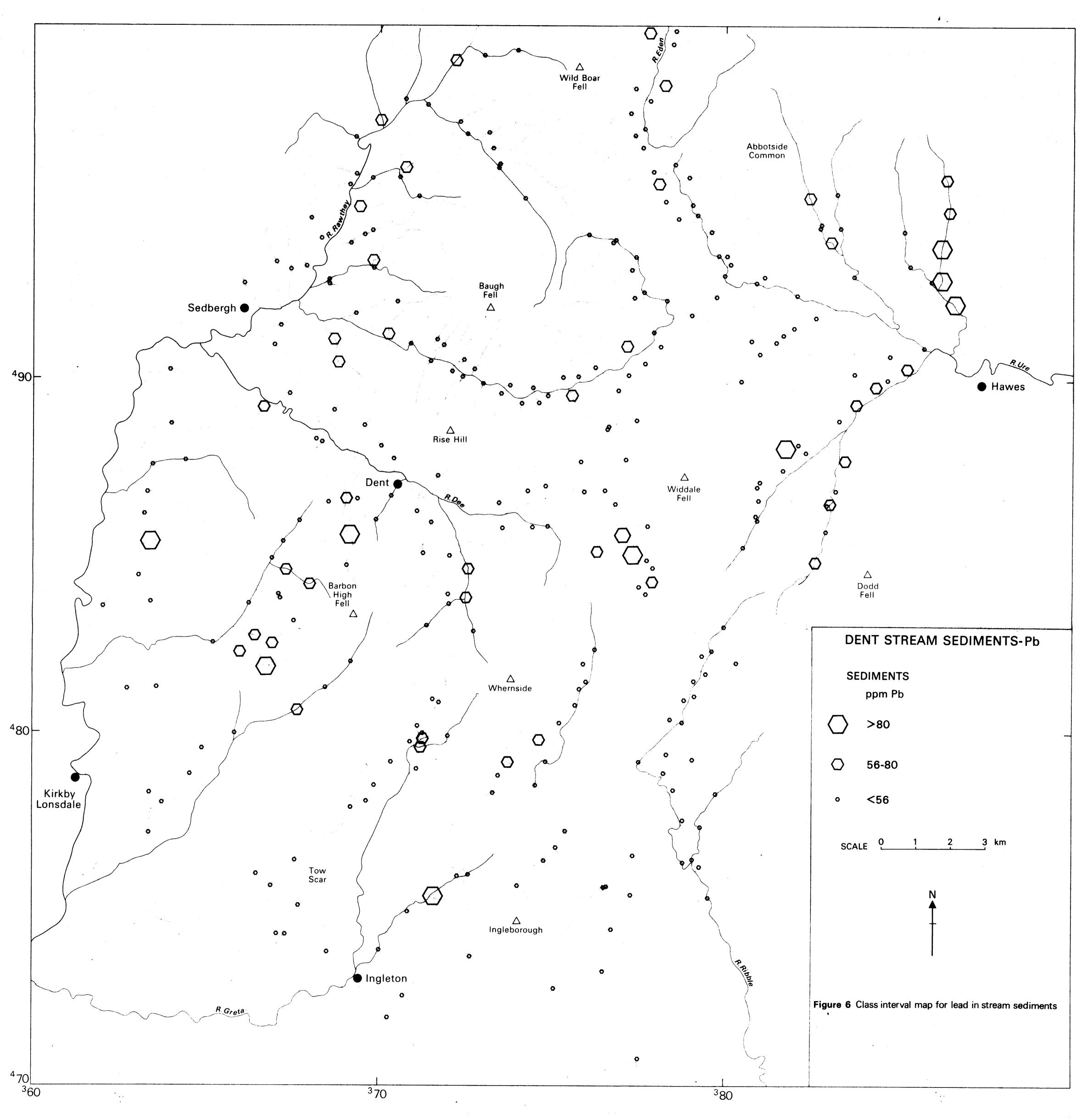

,

. المرجمة والمحاجبة والمستوط ومراجب والمتحار السيار السيار اليار

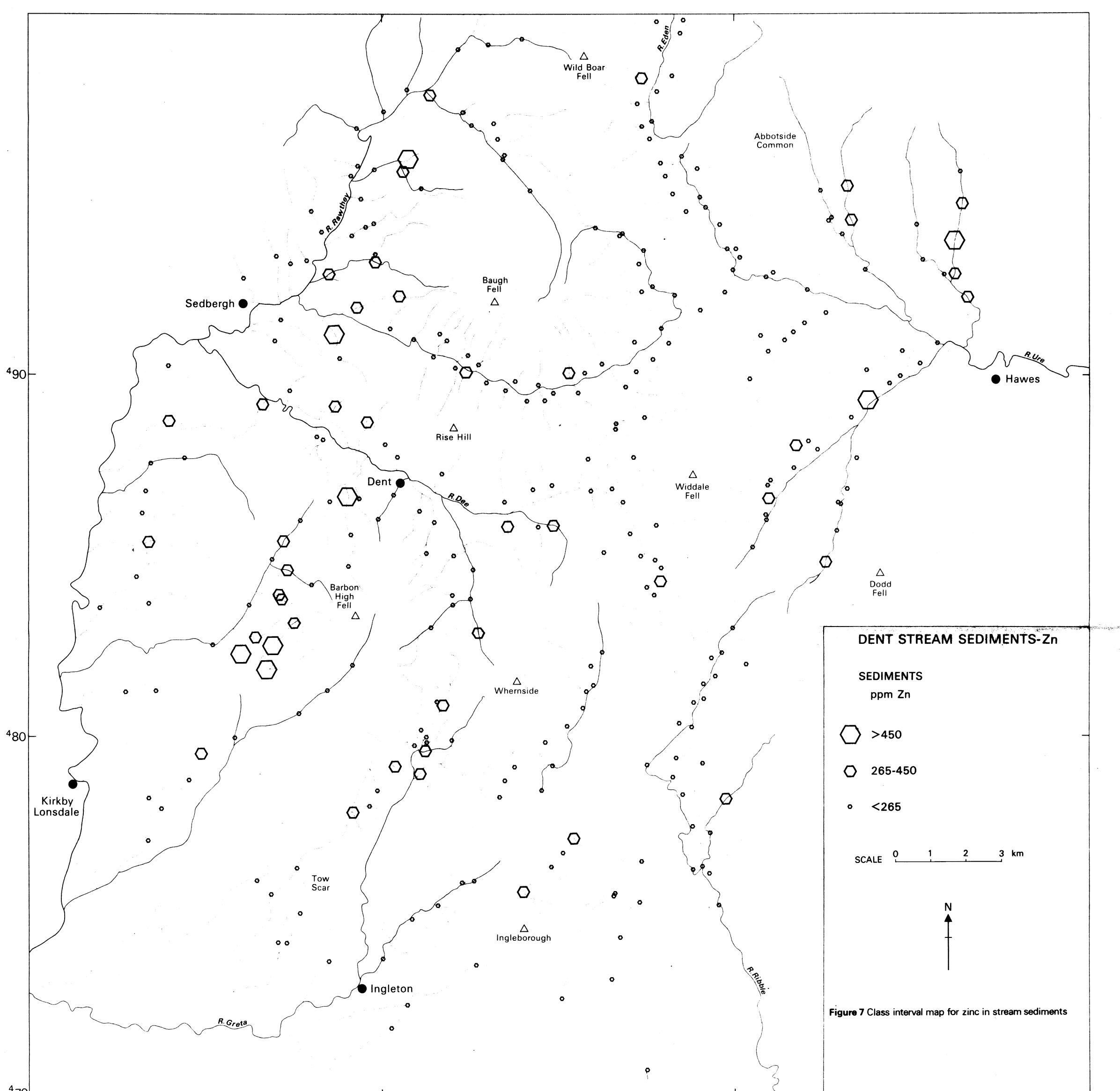
~

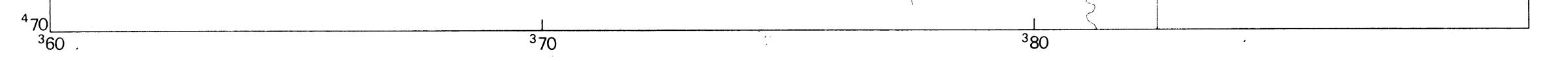

,


·· ·· •


-

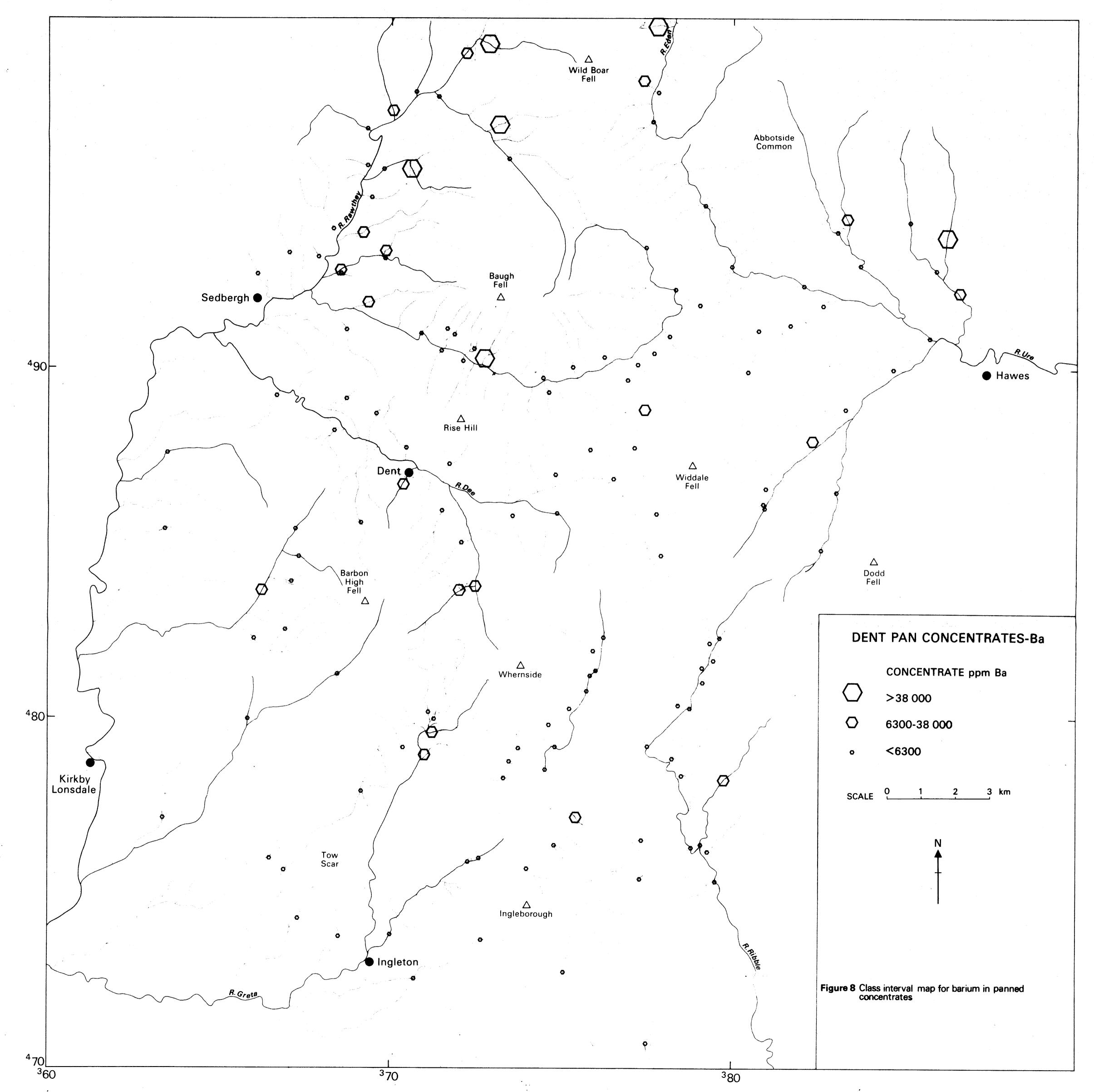
.

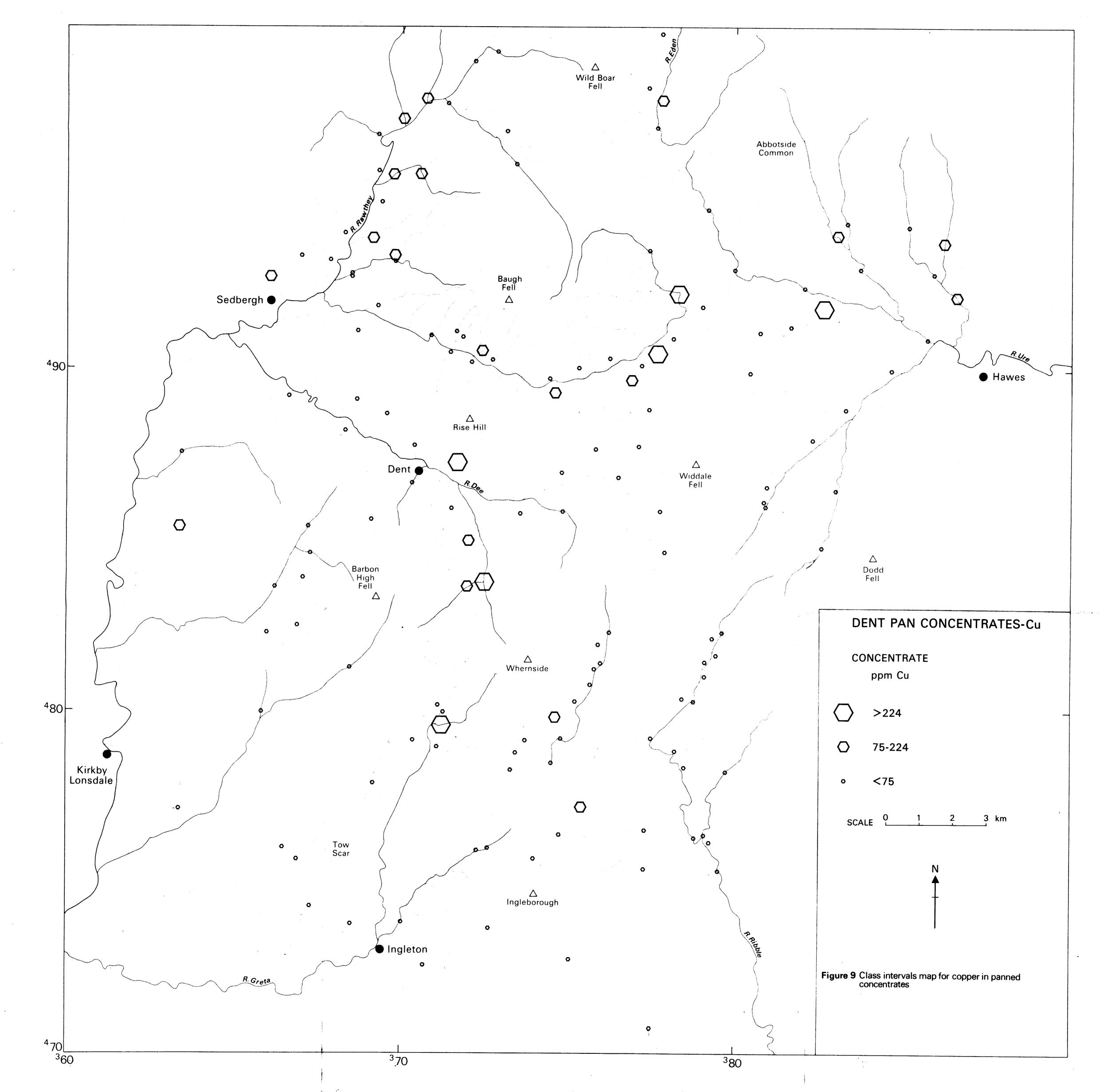

•

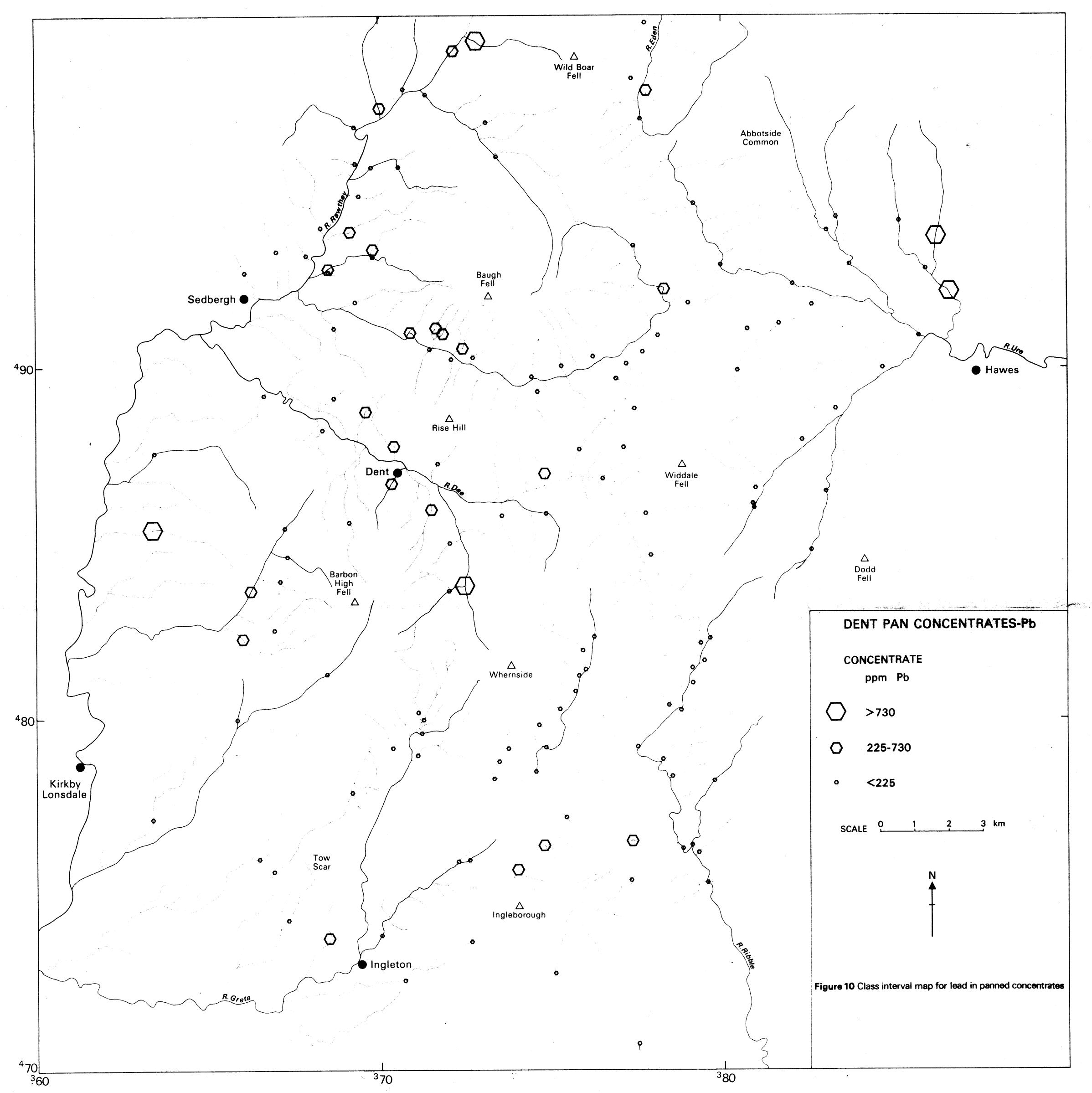


.

•

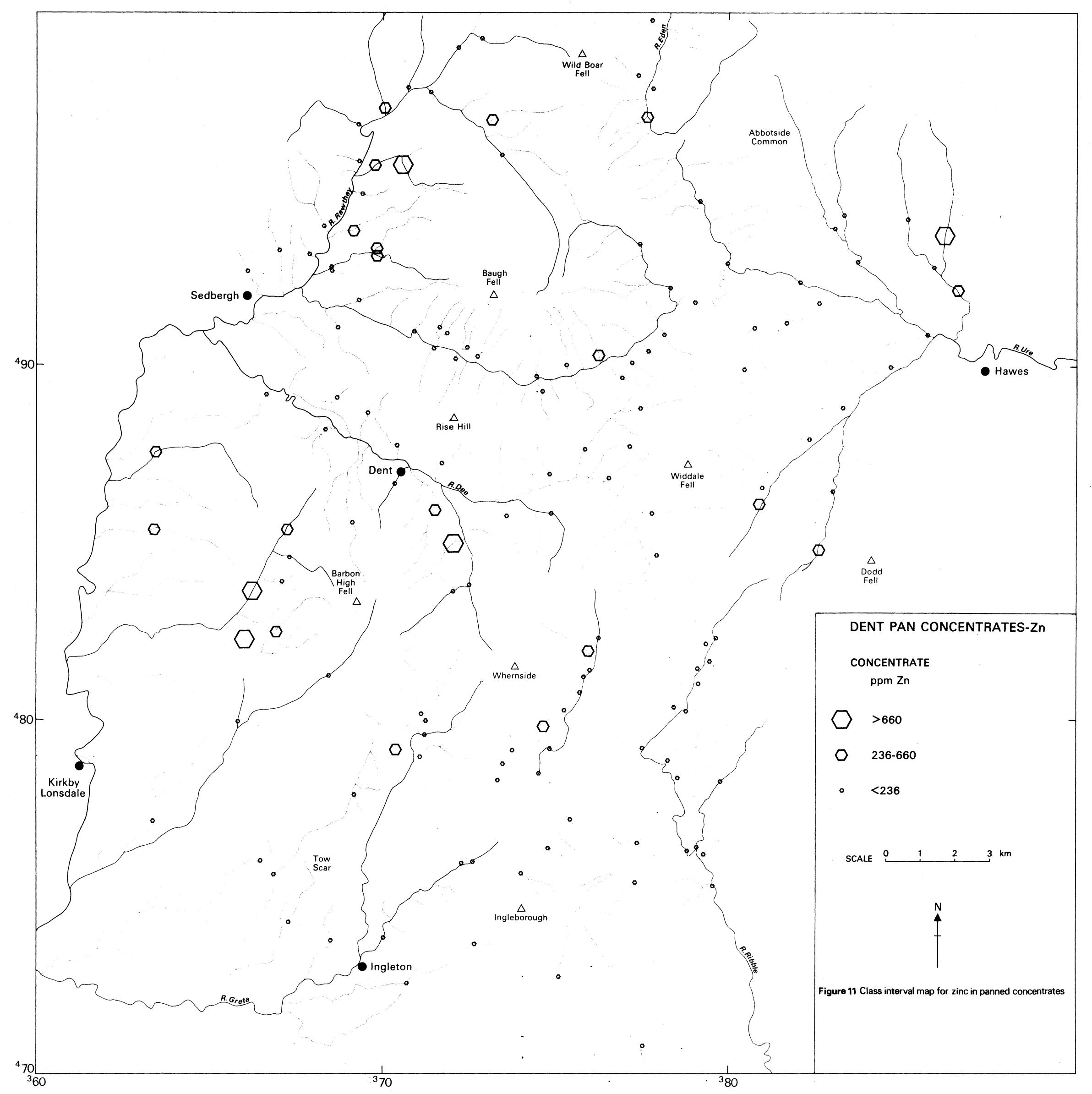


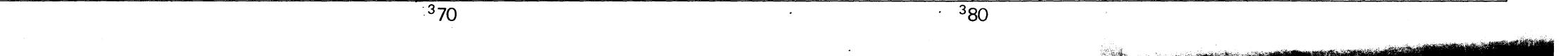


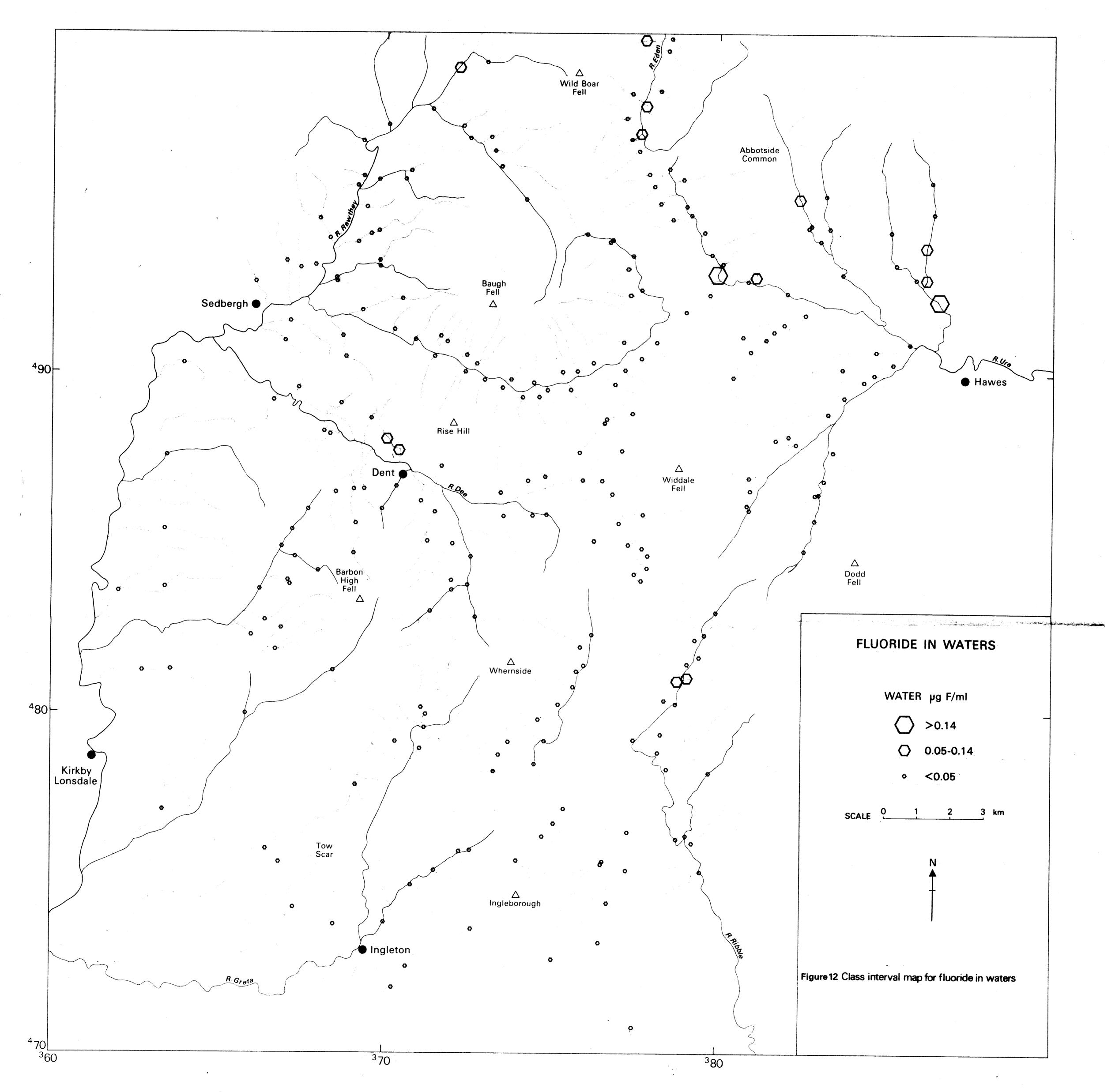

· ·

-.

.

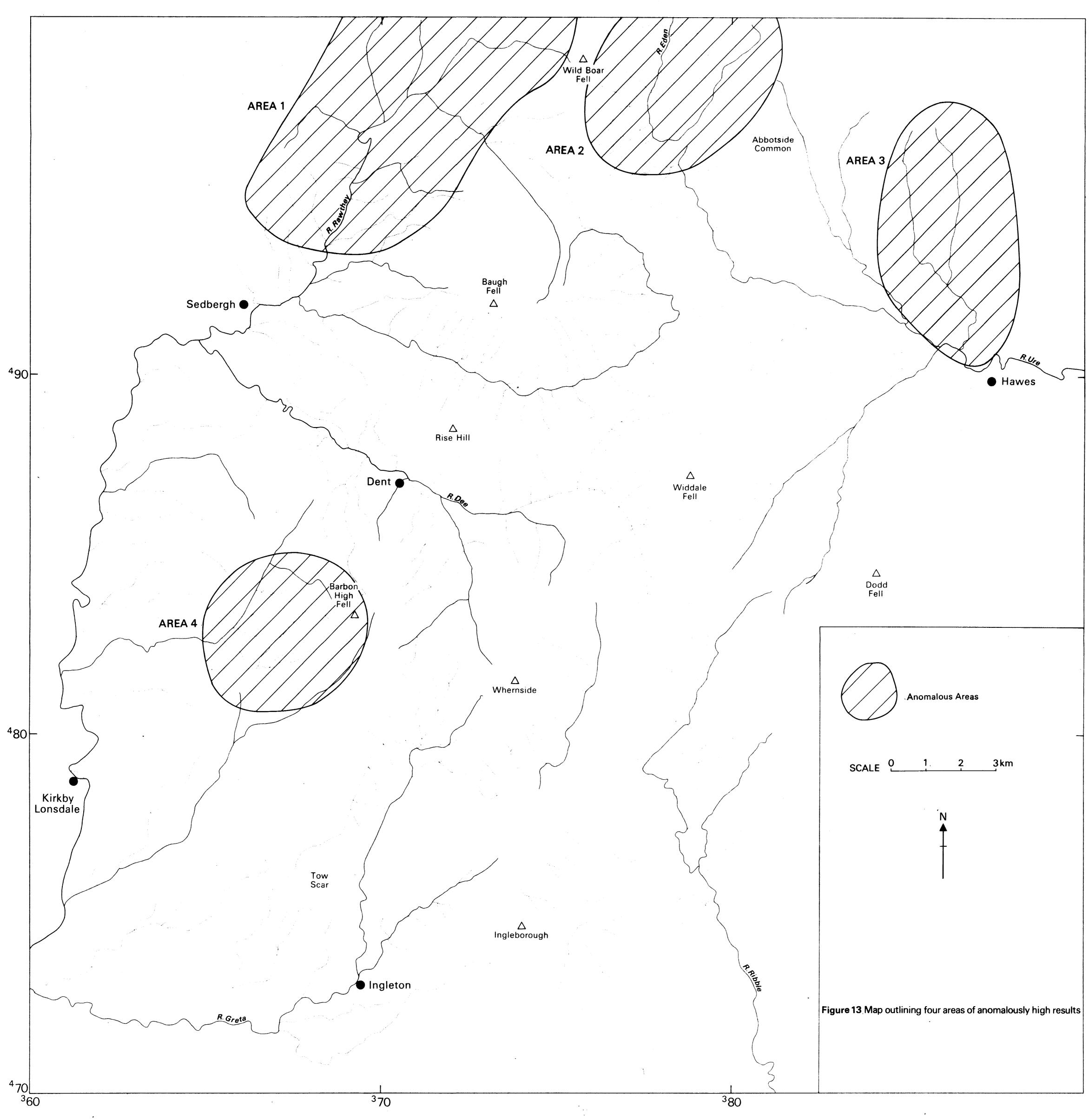





5 A 5

.

.



and the second second

·

Ψ.

.

.