AN INTRODUCTION
TO THE MIAS CONVERSION SYSTEM

BY
S.G. LOCH

REPORT NO. 184
1984

1 \8
‘\\\“ Eﬁp 7

3> "o
%
INSTITUTE OF ‘;
OCEANOGRAPHIC -
SCIENCES
N
"y
7, ‘,’:—,

7.
J,

et e 1 e Pt o i

INSTITUTE OF OCEANOGRAPHIC SCIENCES

Wormley, Godalming,
Surrey, GUS8 5UB,
(0428 - 79 - 4141)

(Director: Dr. A.S. Laughton FRS)

Bidston Observatory, Crossway,

Birkenhead, Taunton,

Merseyside, L43 7RA. Somerset, TA1 2DW.

(051 - 653 - 8633) (0823 - 86211)

(Assistant Director: Dr. D.E. Cartwright) (Assistant Director: M.J. Tucker)

When citing this document in a bibliography the reference should
be given as

IOCH, S.G. 1984 An introduction to the MIAS conversion
system.
Institute of Oceanographic Sciences, Report, No. 184
66pp.

[4

INSTITUTE OF OCEANOGRAPHIC SCIENCES

BIDSTON

An introduction

to the MIAS conversion system

by

S5.G. Loch

I.0.S. Report No. 184

1984

CONTENTS

1. Introduction+
2. Background o 000 0.0,
3. Outline of Databanking Operations - e
4. Design Background e e e e e e e e e e
5. Outline of Conversion - Definition of Terms
5.1 Conversion Terminology e e e e e e
5.2 Originator’s Identifier - CSHOID e
5.3 Source Format <
5.4 Accession Identifier e e e e e
5.5 Subaccession e e e v e e e e e
5.6 IPS Number © e e e e e a4
5.7 Transfer e e e e e e e e e e e e
5.8 SMED Processing,
5.9 Merging
5.10 Data Flow Diagram C e e e e e e
6. Transfer+ 00
6.1 Functional Requirements . ., . . .
6.2 Single-Step Procedure . .
6.3 Checkpointing
6.4 Flexibility in the Use of Media
6.5 Use of Tape & Multi-accession Processing
7. Transfer Nesign: Files, Formats
7.1 Principal Files
7.2 PXF - A format for datacvcles
7.3 OXF - A format for Hydrographic Data .
CONVERSTON (3

17 May

10

11

12

12

13

13

13

13

14

14

14

14

14

14

15

15

15

16

16

16

17

17

R4

7.4

"B" file format

CONVERSION (&)

- e

System

7.5 "D file e e e e e e e e
7.6 Status Files e e e e e e e e
8. Transfer Design e e a e e e e e e
8.1 The Need for a System
8.2 System Outline e e e e s
8.3 Channel Specification Table (CST) .
8.4 THeadings e e e e e e e e e e e s
8.5 Use of Binary & Character Channels
8.6 S-heading & Dynamic Sourcing .
8,7 S-heading & Operations e e s ..
8.8 Flag Channels + .+ « . .
8.9 Other Headings e e e e e e
8.10 Channel Ordering and Numbering .
8.11 Limits, Absent Data Values & Flagging
8.12 "A" File Options % Suppression .
8.13 TInput of Source stored by Parameter
9. Transfer Implementation e e e e - .
9.1 CST Analysis v e e e e e e s
9.2 Use of Vectors in Transfer
9.3 Channel Descriptor Vector . -
9.3.1 Bit Masks
9.4 MDNatacycle Processing c e e e .
9.4.1 VWVork Array e e e e
9.4.2 Input . . . P
9.4.3 Datacycle Processor
9.4.4 Operation Routines .
9.4.5 Principal File Output from
9.5 Channel Suppression
9.6 Transfer Intermediate File e
9.7 Transfer Intermediate File Vector .

17 May

17

18

19

19

19

20

20

21

21

21

22

22

22

23

23

23

24

24

25
25

26
26
26
26
26
27

27

27

10. Ancil

10.1

10.2

10.3

10.4

10.5

11. SMED

11.1

11.2

lary Operations e e e e e e e
Conversion Central Index
Concentration Tapes & Tape Index
Code Tables e e e e e e e e e
Natacycle Editing e e e e e e

Calibration vt e e e e e e e

Requirements

Introduction - Header Information on the Base

Functional Requirements of Series Header Preparation

12. System Outline - Series Header Preparation

12.1

12.2

12.3

12.4

12.5

13. SMED:

13.1

13.2

13.3

14. SMED

14.1

14.2

14.3

14.4

Storage © e e e e v e e e e

Series Header Fields
Series Header Presentation - PRODFORM
PRODFORM - Field Tagging

Field Standardisation s e e e s s

Stack Creation “ e e e e e e e s
Record’s Field Descriptor File . . .
Field Load Order Descriptor e e

Print Form File “ e v e e e e e e

Input- Keying, lLoading & Verification
Input Form . ., . ¢« .« . . ¢ . & v . .
Verification
SMED Load e e e e e e e e e e

Reduction in keying.

15. Series Header Stack Processing s e e e e

15.1 Selection - Record Key

15.2 Record Appraisal

15.3 Default Differencing
CONVERSTON (5)

17

28

28

29

29

29

30

30

. 30

<31

32

. 32

. 32

32

33

33

33
34
34

34

34

34

34

35

35

35
36
36
36

84

15.4

"B" File Differencing e e e e e e e e e e e e e

15.5 Inventory Differencing + « ¢« ¢« « « « ¢« « .
15.6 Checking - Intrinsic Checks e e e e e e e e e e
15.7 Checking - Extrinsic Checks C e e e e e e e e e
15.8 Checking - Other Checks e e e h e e e e e e e e
15.9 Field Modification . . « ¢ v ¢« & & ¢ ¢ ¢« @ ¢ o « .
15.10 Job Spawning s e e s e h e e e e e e e e e e e
15.11 Merge Spawn . « & ¢ ¢ ¢ ¢« 4 4 e e 4 e s e s s 4
15.12 Crossreference Program v v e e v e e e e e e e
15.13 Series Header Print Program . . . + « « & + o « &
16. SMED - NSH: Preparation of Series Ancillary Information
16.1 Reference Numters e e a e e e e e e e e e e e e
16.2 Narrative Documents e e e e e e e e e e e e e e
16.3 Data Activities, Projects, Fixed Stations .« e e
17. Merge Program - Requirements e e e e e e e e e e e s
17.1 Functional Requirements e v e e e e e e e e s

18. Merge Design/Implementation . . + ¢ « &« ¢ « o « & & o« &

18.1

18.2

18.3

18.4

18.5

18.6

MIAS Standard Format (MSF) . ¢ v ¢ ¢ « v o o o « &
Merge/Load Interface file (MLI) e e e e e e e
Program Outline e e e e e s e e e s s e e e s e
Principal Merge Datacycle Operations
Segmentation .« .« ¢ ¢ 4 4 v e 4 e e s s e n e e o e

Program Options e s a2 s s e e s e s a e e e s s

19. Acknowledgements e e e e e e e e e e e e e e e

APPENDIX A. System Documentation e e v v e e e e e e e s

CONVERSTION (6)

17 May 84

APPENDIX B. Series Header Form S S Y

APPENDIX C. System Throughrut Statistics D Y
C.1 Transfer LT Y Y

C.2 Merge . « v v v i i i i et e e e e e e e e e e e e e e e e e e b

APPENDIX D. Example of a Logical Mapping Document . . v o« v & v o« v o« o ~ . 49

APPENDIX E. Chronology of System Building v v61

APPENDIX F. Software Analysis . . & . & ¢ & v ¢ v v v v v v s o o o o o« « . 63

APPENDIX G. Data Flow Diagram . . « & ¢ v v v v 4t 4 v 4 v v o s o o o « « « 64

CONVERSION (7 17 May 84

1) Introduction

The Marine Information and Advisory Service has been given the remit of
establishing a mnational archive of oceanographic data. This archive is
computer-based and is a repository for data emanating, for the most part, from
automated recording packages deployed at sea or on the coast. The data
originates with a substantial number of laboratories and companies and is
submitted in diverse formats, mostly on magnetic tape and is in a form
appropriate to analysis. That is to say basic calibration and editing have been
carried out, but in most cases, such subsequent operations as filtering or
smoothing have not normally been performed.

Before the data can be archived it has to wundergo reformatting, and header
information must be collated according to prescribed standards. It is the
function of the Conversion system to provide the framework and facilities for
these activities and this document introduces the substantial body of software
that has been developed in this domain.

One very important aim in designing the system was to ensure that as new areas
of research evolved and additional sources of data became available, the effort
needed to extend the system to cover the additional types of data to be banked
would remain small: only in this way 1is it possible for a small team to
undertake the manifold tasks involved in banking a complete spectrum of
oceanographic data. The design accordingly emphasises a high level of
generality, and has resulted in the generation of relatively sophisticated
software providing, for example, the ability to process data submissions in
previously unseen formats with the outlay, in some cases, of no more than a few
hours of programmers’ time.

Another and in many ways crucial concern was to ensure the accuracy of the
transformational process and this has been achieved by the incerporation of many
and varied check mechanisms within the software and the provision of suitable
feedback to the system’s users.

Some indication of the maturity of the system is gained from the fact that to
date more than 90 different source formats have been logged, and whilst some are
of an intermediate nature, much of the data in the remaining formats has been
converted to standard form. About half of this has been loaded to MIAS’s I-D-S
database, and has thus completed the final stage of the banking process.

CONVERSION g 17 May 84

Background

2) Background

The role of MIAS within I0OS and its responsibility for the banking of
oceanographic data have been covered in the paper by Jones and Sankey; they
describe the I-D-S/I series database now implemented on the Honeywell 66/DPS300
system and stress the integrated nature of the base and the commonality of
format.

Work on the present Conversion system started with the foundation of MIAS at the
end of 1976. The system has benefitted from an extended gestation period
incorporating the results of what, in retrospect, can be described as the pilot
developments carried out in the first 20 months. These permitted the
identification of virtually all the important factors to be taken into account
in the design of the mature system.

Conversion in its simplest terms can be thought of as the task of reformatting
relatively 1large amounts of data, for the most part submitted on magnetic tape
and in many different formats, into one of a small number of internal formats
and linking it to the associated documentation which is to be prepared in
machine-readable form.

An obvious factor in the relevance and use of a database of this nature is the
size and comprehensiveness of the datasets it contains and the consequent need
to maximise, within the constraints of accuracy, the throughput of the
Conversion process. Equally it is never envisaged that there could be a shortage
of potential candidate datasets for banking. It is therefore appropriate, in
the interests of long-term - defined here to be of the order of 7 to 10 years -
throughput, to set aside a considerable initial development effort.

Until reformatting - Transfer is the MIAS term - has occurred the data cannot be
really regarded as accessible and, because there is such a variety of formats,
providing the means for the efficient production of such reformatting programs
can be counted as one of the primary design challenges.

Another problem area of design is the collation of descriptive material,
generally referred to as header information, and the linking of this information
with the individual series. Here the machine and human components of the system
are 1in close association and some skill 1is needed to determine their most
appropriate combination.

This report outlines the Conversion system with considerable space being devoted

to the discussion of design issues. Appendices provide quantitative information
on the working aspects of the system.

3) Outline of Databanking Operations

Before going into detail in the matter of Conversion it will be useful to
outline some of the of activities performed by the MIAS databanking section
(MDBS) - some 12 people.

1) Data Scouting. This involves the making and maintaining of a liaison with
the personnel of laboratories, both governmental and non-governmental,
which are likely to supply MIAS with data for incorporation within the MIAS
databank.

One of the important aspects of this work involves the updating of
computer—based 1inventories. Each inventory is associated with a particular

CONVERSTON 9 17 May 84

Outline of Databanking Operations

class of data: there are, for instance, inventories of wave data series,
and moored current meter series.

2) Conversion. Two people are assigned to the task of bringing data into a
standard format and developing the associated system.

3) Data Screening. In general it is most important to assess the quality of
the data being banked and, preferably, within a period not too remote from
the time at which it was collected. The process invariably highlights
problems which in many cases can only be resolved by the originator. To
help in this assessment the data is passed through a standard battery of
plotting programs (time, series plots, exceedence diagrams, scatter plots,
etc.), the choice of programs depending on the data type.

4) Specialist Areas. WNot all data passes through Conversion. Gridded
bathymetry data is one example. Spectral wave data is another although in
the latter case, Conversion may be extended to cope with it.

5) Database Management. One person is involved in the updating (Loading) of
the bank with fresh data and retrieves banked data when requested.

In addition members of the section will co-operate to service requests for data.

Often the data asked for, while with MIAS, is in the process of being screened
and not actually banked.

4) Design Background

Oceanographic databanking has in the past tended to concentrate on the banking
of cruise-orierted water-bottle and bathythermograph records (we will refer to
this as hydrographic data) and so the associated processing systems tend to
reflect this fact. Data is sent by the collecting laboratories, in a nationally
or internationally agreed format, to the national archive centre where it can be
aggregated, indexed and appended to large tape files.

The work of getting the data into the right format was, and remains in these
cases, a matter for the supplying laboratory. This approach is difficult to
extend to the many other types of data that now need to be exchanged, mnot it
must be added, because (international) formats have not been agreed for these
purposes — GF3 is such a format - but because of the inertia, expense and
diversion of resource which 1is 1inevitably entailed. It is no surprise to
discover, for example, that scientists who are normally only too happy to hand
data over for safekeeping, baulk at the idea if it involves them in writing
reformatting programs. For this and other reasons it is desirable to promote a
central data exchange agency/bank to undertake the work of converting the data
from originator’s archive format.

MIAS, then, has to deal with large quantities of data, covering a wide range of
oceanographic (and to a certain extent atmospheric and geophysical) parameters
submitted in many different formats. These have to be loaded, with the exception
of a small number of special datasets (e.g. directional wave spectra), to the
bank.

A glance at Appendix C, which catalogues the number of formats logged by MIAS,
reveals the extent of the problem. It is gquite clear that to treat each format
in a separate manner, in the sense of developing separate programs for ‘loading
each to the btank’, is totally impractical, and that some integrated system is
necessary if the effort involved in software development and maintenance is not
to curtail the data quantities to a point where the banking operation is called
into question. One facet of the design philosophy must be to minimise the
parallelism of development inherent in the separate path approach.

CONVERSION 10 17 May 84

Design Background

The basis for the integrated processing system 1is provided by the database
itself. The Conversion system is built round the concept of the series. In some
cases the notion of the series is clearcut, in others less so. For example, the
series can be identified with the record obtained from the deployment of an
instrument package in the sea, or, a CTD (Conductivity, Temperature, Depth)
cast, or, a year’s data from a continuously recording tide gauge. In the last
case, the quantity coincides with that used by the supplier. Broadly speaking,
for the data to constitute a series the same parameters must be measured
throughout: structuring of the supplier’s tape and documentation will normally
determine the length. In the case of hydrographic data, the series will
generally be identified with a cruise. (A full processing capability, though
designed in outline, has yet to be developed for this type of data).

By emphasising the commonality of different data types rather than their
differences one can expect to simplify the operational aspects of the system.
This is tremendously important because it has such an impact on the human
factor: in particular reliability and detection of errors are influenced for the
better if the system is both uniform and simple in relation to the people who
use it. They should be allowed to devote their time to the study of the
vagaries of the data and not be distracted by those of the processing software!
The counterpart to this operational simplicity is generality of application and
such generality can take a long time to develop. As databanking is a mnotably
long-term affair this is acceptable provided that interim solutions can be made
available for high priority datasets. In MIAS’s case we have been lucky, in that
significant quantities of data were available for banking in a small number of
formats before the full machinery of Transfer (q.v.) had been developed. There
are many more or less obvious concomitant benefits that can be realised by using
the 1integrated approach: longterm software development, maintenance and
learning overheads are all reduced; the orthogonalisation of design means that
the system is flexible and more easily transported to other manufacturers’
machines: one can support specialised features whose use would not otherwise
merit development; the relative sophistication of the system itself will serve
to attract people of the appropriate calibre.

There are essentially three important components to the system:

1) Reformatting. The data must be reformatted into one or a small number of
internal formats at the earliest opportunity. Subsequent process programs
can then be written to interface to these generalised formats.

2) Screening programs. To help in the assessment of the data, plotting and
screening programs need to be developed for each data type.

3) Header assembly. Header information needs to be collated in a systematic
way: the problem is that (external) formats vary so much in what is
provided.

S) Outline of Conversion - Definition of Terms

As indicated in the preceding section, the process of conversion resolves into a
multi-step procedure, the principal processes of which are: Transfer,
Screening, SMFD processing (header assembly and checking) and Merging.
Schematically it can be represented in the following way (a more refined
representation is to be found in appendix G).

CONVERSTION 11 17 May 84

Outline of Conversion - Definition of Terms

Series From originator

SCREENING —=————=mw——— > Header Assembly
EDITING

kkhkkhkkhkkikkk

DATABASE
*hkkkkhkkk

5.1) Conversion Terminology

Laboratories generally supply data on half inch magnetic tape. Cards, paper
tape, floppy disks and in-house disk files have also been used and in such cases
the first step is to copy them to the preferred medium. Such an aggregate of
data 1is termed an accession and will normally consist of a number of series,
each of which is taken to be composed of a header (information such as series

identifier, start time, location, etc., coupled with plain language
documentation qualifying the data) followed by datacycles. In some cases the
series may also have a trailer: for present purposes this addition is

conceptually no different from a header. A header may be virtually null in that
the series 1is known only by its position on the tape though this is rare and
usually avoided.

A datacycle is a set of measurements of parameters. Typical parameters are
salinity, sea temperature, wind speed, etc. The term channel is often used
synonvmously but has a particular meaning in the context of certain types of
file processing.

5.2) Originator’s Identifier - CSHOID

There is a field, CSHOID, within the database series header defining the
originator’s identifier for the series. Somewhat misleadingly this is usually
defined by MIAS and not the originator. However the field, which 1is 12
characters in extent, is composed of elements — such as cruise or meter numbers,
station identifiers and the like - which the originator uses to define a
(generally but not always) unique reference for the series.

CONVERSTION 12 17 May 84

Outline of Conversion - Definition of Terms

An example of a CSHOID: A/123/M

The example is taken from a series associated with a rig deployment. The rig
holds a number of current meters at different depths. The A identifies the rig
on which is mounted meter 123, and the M signifies that it 1is in the middle
position of three (Bottom, Top being the others). The conventions for defining a
CSHOID are defined in the Transfer documentation for the associated source
format. Other originators may have a quite different set of identifiers.

5.3) Source Format

The first step in Transfer, assuming a tape of unfamiliar format, is to document
that format. This will normally involve dumping the tape as supplier
documentation is not often sufficient in this respect and would need to be
checked in any case.

Each source format is allocated a 3-digit number. Formats can vary widely in
their complexity, spanning the spectrum from simple one-offs to sophisticated
general purpose formats such as GF2 and GF3. In regard to the latter it would be
usual to document the characteristics of the particular usage: that is to define
the subsets employed in writing particular accessions. An accession is normally
associated with a single format but this may not always be the case.

5.4) Accession Identifier

Accessions are identified through a nine-digit number: sssyyaaaa. sss 1is a
supplier code, yy, the last two digits of the year of the accession (year in
which it reached MIAS), and aaaa the number of the accession within the year.

5.5) Subaccession

Subaccessions are identified by a single character, normally alphabetic, and are
introduced for the purposes of convenience when processing large accessions.

5.6) 1IPS Number

The series 1is 1identified by accession, subaccession and the Intermediate
Processing Serial number. The latter number is allocated by Transfer on a
sequential basis to successive series within an accession (strictly
subaccession) and consists of five digits (iikjj). The last two digits are
normally set zero by Transfer and are reserved for the identification of
daughter series derived from the original through truncation or the stations of
a hydrographic series. To make mental reckoning easier, IPS accession sequences
always start with k = 1 and the number ii is incremented from that of the last
series Transferred in the previous accession. Eventually, of course, the
numbers wrap round - 00000 is a valid IPS number. This lack of uniqueness is not
generally a problem and the IPS number constitutes the usual tag by which the
screeners identify the series, and is used in preference to, for example, the
MIAS series reference number, which being up to 8 characters in extent can be
rather cumbersome.

CONVERSION 13 17 May 84

Outline of Conversion - Definition of Terms

5.7) Transfer

Transfer is the term used to refer to the initial reformatting of laboratory-
supplied data. The datacycles are split from such header information as the
series may contain and placed in a PXF or QXF file. PXF and QXF are the
generalised datacycle formats devised by MIAS for the purposes of holding data
undergoing intermediate processing. 1In fact their use is now more widespread
than this.

The header information is put in a header file and a complete listing of all the
datacycles in the series is produced on microfiche.

5.8) SMED Processing

SMED stands for System for Manually Entered Data. The system covers most
aspects of header processiﬁg in the widest sense, including the preparation of
documentation and the linking of this documentation to the associated series.
Series headers are loaded to random access files and the field content is
subjected to checks of various sorts.

5.9) Merging
The process is to merge the (checked) header information with the (possibly

edited) datacycles and write the data in a form suitable for loading to the
database. This is accomplished by a single (large) program - Merge.

5.10) Data Flow Diagram

The above introduction of terms gives a simplified view of the processes
involved in Conversion. A much fuller appreciation can be gained by looking at
the diagram contained in appendix G.

6) Transfer

6.1) Functional Requirements

1) It is necessary to provide a verbatim listing of the complete series
insofar as 1is practical. This allows the screeners to do their work,
permitting as it does, direct and immediate verification of points of
uncertainty which may be uncovered in the screening procedure.

The quantities necessitate the use of microfiche. Each series begins on a
separate fiche.

2) At Transfer it is customary to determine channel 1limits. There are two
reasons for this. Often a channel may be constant and it is necessary to
establish the fact, and secondly, the presence of spikes, which are rather
frequent in occurrence, is automatically revealed.

3) The reason that a channel may be constant 1is due to the prevalence in
source formats of fixed format records and the need to provide space for
unused channels (e.g pressure may not be measured by a particular
instrument so the corresponding pressure channel, allowed for in the
format, is set to a constant value).

CONVERSION 14 17 May 84

Transfer

In such cases it is necessary to prevent - suppress is the term used - the
constant channel from appearing in the PXF file.

4) There is also the need to convert to MIAS standard units. Each parameter
which 1is banked has a designated standard unit and such conversion as is
needed is normally undertaken by Transfer. (The question of calibration,
that 1is the conversion of data from instrumental units to international
units, is not normally part of Transfer and is discussed briefly elsewhere
within the present paper).

5) Polar-cartesian conversions may also need to be undertaken in the Transfer
of velocity data.

6) There is the need to handle header data in source-format-independent form.
A system of field tagging is used. Thus for example ‘start date’ is
identified by the 4-character tag ‘A270°. The six-character field can then
be entered in a file as ‘A270yymmdd’

Procedural requirements may be itemised as follows:—

6.2) Single-Step Procedure

From the point of view of managing the processing of data it is undoubtedly most
convenient to have all the necessary transformations accomplished in a single
step. This means that all formats become essentially similar in important
respects, mnotably the allocation of tapes and disk files. This stipulation is
likely to raise the level of software complexity over that which might otherwise
be the case.

6.3) Checkpointing

Both from the standpoint of cost and that of convenience it is essential to
provide a checkpointing facility. That is there must be the ability to resume
work, following an abort, from points intermediate in the job process. The
checkpoint interval is taken to be the individual series. To understand the full
significance of this point, the following aspects of the operation need to be
borne in mind.

Firstly the Transfer program is relatively complex in that there are at least 4
files being generated concurrently, any one of which may fail through space
considerations. Secondly one is working frequently with one-off formats and data
prepared in a one-off manner, both conducive to the appearance of problems.
Thirdly the large cost of redoing work should be avoided. Lastly one needs to
be able to patch the software to process individual series when the need arises
and the absence of the checkpoint facility makes a potentially simple operation
difficult and rather hazardous.

6.4) TFlexibility in the Use of Media

In line with the need for operational simplicity articulated above, microfiche
information (print images) are written directly to the tape which is to be
dispatched to the bureau. Operational flexibility is increased by having the
facility to reduce the number of tapes (normally 3 for a Transfer job) to two by
putting the PXF (QXF) output onto disk (less important now that the system has
been upgraded).

CONVERSION 15 17 May 84

Transfer

6.5) Use of Tape & Multi-accession Processing

It is the policy to keep source tapes indefinitely whilst recycling tapes of an
intermediate nature. Limiting direct Transfer input to magnetic tape
automatically enforces the requirement of having source data available on tape
and thus in a form which can be archived without further processing or copying.

Tapes used in Conversion are recycled once it has been established that all the
data held on the given tape has been banked or is to be discarded.

Accessions vary widely in terms of the data quantities involved and many are

small. To avoid an undue proliferation of (little used) tapes some means for
batching accessions onto a single tape needs to be provided.

7) Transfer Design: Files, Formats

7.1) Principal Files

The Transfer program interfaces to four principal files and potentially one
other. These are identified as follows:

1) The "A" file. This is the Transfer datacycle output file., 1In all the
applications to date, the chosen format for this file has been PXF, a
format specifically designed by MIAS for the purpose (q.v.). [1 file per
series]

2) The "B" file. This is the file containing header information. The file
consists of a number of records, each record corresponding to a separate
series. Records are divided into ‘segments’. [1 file per subaccession
(normally)]

3) The "D" file. This is the file that contains a complete listing of the
series in print image form. It can be processed, by a utility, to give
standard hardcopy printout, or, it can be despatched - on a tape - to a
bureau for microfiching. [1 file per series]

4) The Status file. Because the Transfer of an accession 1is not in general
accomplished in one job, details, such as the total number of series
processed up to a given point in time, need to be passed from one Jjob to
the next. The status file is used to store these details and also a small
amount of information relating to each series. [1 file per accession]

5) There may in addition be a fifth file. This is the auxiliary status file
which performs a similar role to the ordinary status file but in the
context of multi-accession processing. In this case the file provides the
link between the processing of successive accessions on a multi-accession
tape. [l file per multi-accession tape]

Although there is a facility to store the "A" files on disk, in practice,
because of the data volumes involved, the "A" and "D" files are written to
multi-file tapes, with one series per file (there are no labels).

The "B" file is a sequential text file stored on disk which can be accessed

using conventional text editing commands, whilst the status files, being random
access, require specially written software.

CONVERSION 16 18 May 84

Transfer Design: Files, Formats

7.2) PXF - A format ﬁQENQiQQEZEEEE

PXF is a binary format. The file structure consists of a header, identifying the
file by a blank-padded 40-character file name, the number of parameters or
channels stored and the number of datacycles, followed by a sequence of blocks
containing the series proper.

The channels are identified by 8-character (blank-padded) names and classified
as integer, floating point or 4-character alphanumeric. Typical channels might
be TEMP, WDSP and WDDR (standing for temperature, wind speed and wind
direction). The header also provides for the limits associated with each of the
variables.

The storage of the repeating group represents a compromise between storage by
parameter (all the values for the first channel precede all those of the second
which precede all those of the third and so on) and storage by datacycle. Thus
in PXF, 64 values of the first parameter immediately follow the header and are
followed in turn by 64 values of the second parameter, 64 values of the next and
so forth.

The compromise allows the sequential processing of files without an overly large
buffer requirement and at the same time simplifies the application software by
virtue of the fact that data of the same type is in contiguous locations.

In addition, PXF permits the possibility of associating with each datum (4
bytes) a 1-pyte character flag. Thus a channel is described as "flagged" or
"unflagged" and, as might be expected, much of the complexity of the format and
the associated file access software centres on this attribute.

If the file is binary and unflagged, the space usage is asymptotically optimal.
However because there was a requirement to model the header on that of a pre-
existing format (modified G-EXEC) there is much unused space within the header
making it unsuitable for the storage of short series,

If the file is flagged, then at worst the space usage is asymptotically in the

ratio 1.25 : 2 to that which is optimal. The use of only one channel, which
this represents, is extremely rare.

7.3) QXF - A format for Hydrographic Data

As indicated above PXF is 111 adapted to the needs of banking water-bottle data.
QXF is a format specifically designed for the task though it is of a
sufficiently general nature to support other uses,. At the present time
Conversion is being extended to handle this new format and so further discussion
is curtailed.

7.4) "B" file format

The "B" file carries the header information for each series but does not itself
have a header. The record is divided into some eight segments corresponding to
the various categories of data.

1 Series identifiers including accession, subaccession and IPS. Details of
Transfer

2 Field values identified by leading 4-character tags

CONVERSTON 17 18 May 84

Transfer Design: Files, Formats

3 Channel suppression information

4 Header information derived from source tape

5 Header information computed by Transfer

6 Warnings issued by Transfer

7 Limit information

8 Special purpose segment (depends on source format being Transferred)

Not all the categories will be represented in any one record - segments 6 and 8
in particular may be absent.

Apart from the formatting of the data in segments 1, 2 and 7 which 1is closely
prescribed, segments are built up from lines of text, the boundaries of segments
being indicated by a special character sequence (*n*n*n*n). E.g. a fragment of
"B" file might appear as follows:-

*2% 2% Q%)
A140 167/1
A270781110
A2801230
B020 1
BO30 6789
A380 28.
*3% 3% 3% 3
3. Temperature
khk 4k Lk
METER DEPTH 28. M; START TIME : 78/11/10 - 12.30
CYCLE INTERVAL : 10.000 M.
*5% 5% 5% 5
TOTAL NUMBER OF CYCLES IN SERIES 6789
END TIME : 78/12/27 - 15.50

A270 and A280 are the respective tags for ‘Start Date’ and ‘Start Time’. 167/1
is the CSHOID.

7.5) D" file

As stated above the '"D" file consists of a series of print images. Standards
have been 1laid down regarding the layout of the file. These determine to some
extent the form and content of header and trailer sections but more particularly
the form of the datacycle page.

Fach page begins with a one line banner identifying the series by accession,
subaccession and IPS number and CSHOID. The date/time of production is also
printed on this line.

Datacycle pages have 50 lines of datacycles with a line space preceding a block
of ten lines. The information in the datacycle is qualified by the presence of
titles set at the top of the page.

In certain cases the datacycle is so large that a single page width 1is
insufficient. In such cases the practice 1is to extend the line onto the
neighbouring microfiche frame so that the cycle can be seen as one when viewed
on the microfiche viewer (with a lens of half-power magnification). A maximum of
three page widths is allowed for the extended datacycle.

CONVERSTON 18 18 May R4

Transfer Design: Files, Formats

Another, though rarely used facility, is to have successjive groups of fifty
datacycles appearing on the same page in neighbouring columns. This allows the
economical display of high volume, short-datacycle data.

7.6) Status Files

The principal status file logs volume (tape) identifiers, the numbers of files
on each and the amount of tape (footage) used.

For each series processed, the file is used to record IPS, CSHOID, the number of
cycles and the number of parameters (channels) in the series.

The file is random and has a non-trivial structure. It 1is dinitialised by the
Transfer program at the time of the first run on the accession. 1In the case of
single accession processing the information is drawn from the program command
file, whilst in multi-accession processing it will, in part, be taken from the
auxiliary status file unless this file is also being initialised.

The auxiliary status logs information and summary statistics on the Transfer of
multi-accession tapes.

When Transfer processing is to resume part way through an accession, the

Transfer system uses the information in the status file to prior-position media.
There are utilities for listing the content of these files.

8) Transfer Design

8.1) The Need for a System

One of the problems encountered in the initial phases of the project was simply
the amount of time required to write a Transfer program. The largest program
coded at that time took about 10 man-weeks to complete and the production of
more than 3 thousand 1lines of Fortran code. The simplest had more than 600
lines.

The programs, whilst varying a great deal, nevertheless had a large number of
features in common and the procedure, as now, in writing a new program was to
take one already written and modify it appropriately. Testing the programs was
difficult because each program was geared to tape files and to the batch world
rather than to timesharing.

Clearly if development was to proceed more rapidly, the shared aspects of the
programs had to be recognised in some way to allow the Transfer programmer to
concentrate on those parts of his program which were unique and be relieved of
the need to retest - the possibly corrupted - standard features.

One such way would be to code up these standard features within subroutines
which could then be used in a “building-brick’ approach. This approach, whilst
satisfactory in other contexts, is inappropriate particularly where datacycle
processing 1is concerned. The datacycle manipulations are rather simple and not
really amenable to devolved processing in the manner suggested: it is quicker to
code from scratch. Tasks that remain to the programmer and which one would like
to see eliminated are: the formatting of the microfiche tape and the large
number of other tasks that are governed (and made difficult) by the possibly
varying number of parameters (channels) present within the series; also the need
for buffering and the handling of tapes.

CONVERSION 19 18 May 84

Transfer Design

8.2) System Outline

Another approach and the one that has been adopted is to provide a system into
which (3) source-specific modules can be slotted. They are respectively, the
Header, Cycle and Trailer modules. They can be identified with the processing of
the respective parts of the series, except that, in the case of the last there
is normally a summary function to perform, even though the series trailer as
such may be absent.

The approach automatically eliminates the problems of handling tapes and allows
the provision of a timesharing system for testing. Development can proceed using
input data held on disk and copied from tape. A mild draw-back to this scheme is
that, currently, one is limited to one series per run. Output, normally assigned
to tape, can be diverted to disk and print image files.

The system copes both with the buffering and the potentially different types of
parameter (channel) that may be encountered in each series. The characteristics
of each channel are specified, independently of the three modules alluded to
above, in the Channel Specification Table.

There is also a fourth module which acts as the mainline, and is wused,
principally, to allocate the array space to the program.

8.3) Channel Specification Table (CST)

The Channel Specification Table identifies each channel partaking in the
associated Transfer and the relationships between them. Each channel is
assigned a unique identifying number and a 12-character (maximum) identifier. In
the table the channel’s origin or source is specified as are its characteristics
within the output files (if included there). The term table may be something of
a misnomer because although CSTs are frequently tabular in appearance there is
no actual requirement for them to be so, as will be apparent from the ensuing
discussion.

Two types of channel are recognised, binary and character. A simple example of
a CST is given here:-

~N1 ~I Cycle No. ~s1/0/ ~1D,,16,”) ° ~A ACYCI1(F)I-1,16

~N2 ~I Direc ~SBl ~B,1,F8.1 ~A LCDA11(FTML)F-1.0,F8.1
~N3 ~I Speed ~SB2 ~B,1,F8.1 ~A LCSA11(FTML)F-1.0,F8.1
~N4& ~1 Direc ~SCl,5 ~D,

~N5 ~I Speed ~sC6,5 D,

8.4) Headings

Headings are identified by the tilde (’~") but can appear in any order with the
proviso that the channel number (~N) is identified first. CST formulation can
thus be varied tv suit the requirements of the user. The exact spacing between
headings does not matter.

Headings A, B and D identify the corresponding files. The "A" file 1is the
datacycle file (PXF or QXF); the "B'" file holds the header information derived
or generated from the series and the B-heading specifies how the limits for the
channel are to be derived and handled. '"D" is the name given to the print-image
file (microfiche).

CONVERSION 20 . 17 May 84

Transfer Design

8.5) Use of Binary & Character Channels

A point to note in the above example is the use of identical names under the
I-heading. Channels 4 & 5 are the character equivalents of the binary channels
2 & 3. The source format information is character and rather than have, as is
possible, the system regenerate the character information for the print images
from the binary channels, it is more efficient to simply copy it from source.

This may seem a rather trivial efficiency saving but in point of fact the
predominant cost in Transfer processing 1is 1incurred by binary/character
conversion (largely because formats are interpreted). There is also the fact
that one 1is attempting to preserve the original in a form in which the
originator can easily recognise it. This has particular significance 1in those
cases where the originator has failed to meet the stipulations of the format
(for instance he may have asterisks in places where the declared field width is
too small to hold the number) because one can then patch the binary channel
whilst retaining a true representation of what was actually present on the
microfiche.

8.6) S-heading & Dynamic Sourcing

The S-heading defines the source. Channels with headings beginning “SB and =~SC
are derived from the cycle module. The cycle module will in most cases return
both a binary array and a character variable and the number following the SB or
SC points to the respective word or character within the returned argument. In
the case of character information, it 1is necessary to specify how many
characters are associated with the channel and this number follows the comma. In
the example given earlier, the returned channels are both five characters in
extent and occupy characters 1 to 10 in the returned variable.

Whilst the CST specifies all channels of relevance within a given source format,
not all such channels will necessarily be present for one series, and therefore
some means must be provided whereby the header module can indicate to the system
which channels are in fact present: this is referred to as dynamic sourcing.
Dynamically sourced channels are those in which the number following ~SB or ~SC
has been omitted; such channels will only be included when the appropriate
information has been written to the Intermediate file (q.v.) by the header
module,

8.7) S-heading & Operations

The CST example given above demonstrates the use of an operation (identified by
the number 1 following the ~S). The operation in question is responsible for the
provision of the line numbers on the output and as such is, of course, facile.
Others, slightly more complicated, are the conversion of degrees magnetic to
degrees true and the polar/cartesian transformation. As an illustration of the
latter consider adding the following channels to the cited CST.

~N6 ~S E-W comp. ~510(2,3)01 ~D,,F8.2
“N7 ~S N-S comp. ~S#6 ~D,,F8.2

10 identifies the transformation in question (there are about 20 altogether),
the numbers within the brackets, the input channels in the appropriate order,
and the "0’ (not zero) following the bracket identifies an option (option 1
indicates that the input 1is 1in degrees rather than radians). The D~heading
entries have been included for verisimilitude and provide a contrast to channels
4 and 5 in that, because they are binary, a format must be provided.

CONVERSION 21 17 May 84

Transfer Design

The output channels form a chain with a pointer to the preceding element. In
this case the chain has only two elements and so there is only one pointer -
which 1is intrcduced by the hash sign (~S#6). The system can handle
transformations which involve large numbers of both input and output channels.
As new applications are required these can be assigned a number and incorporated
within the system (see Datacycle Processor in next chapter). There is thus a
mechanism for ensuring that potentially useful features are kept centrally and
are made available for incorporation within future Transfer programs at minimal
expense.

In the case of channel 1 the “/0/’ phrase specifies a base point for the record
count and as such constitutes “data’. In general an operation can have both data
and an option associated with it (options can only be between 0 and 63) and both
can be dynamically sourced (i.e. provided by the header module via the
Intermediate file).

Output channels are only incorporated if the associated input channels are (all)
present.

8.8) Flag Channels

Flag channels can be of two types - explicit or implicit. Implicit flag channels
are always blank and do not appear explicitly in the CST, but their existence is
acknowledged by the presence of an ‘F’ within the brackets of the A-heading
entry.

Explicit channels, as the name suggests, are prescribed within the CST and are
handled as other binary channels except that the information content is only
1-byte. To show that a channel is an explicit flag channel the A-heading begins
A# followed by the number of the associated data channel. Flag channels can be
assessed for limits.

8.9) Other Headings

There is not space to go into the details of the other headings beyond the
following. B- and D-headings normally require titles to be specified, but when
these are identical to that given under the I-heading they can be omitted and
the comma following the B or D is an indication of that fact. Binary channels
appearing in the "D" file require the specification of a format.

Options can be specified under these headings and follow the title field.

8.10) Channel Ordering and Numbering

Channels appearing in the "A" file must do so in the ASCII-sort order of the
A-heading names (ACYCl1 is the name for channel 1).

"B" and "D" file entries normally assume the order of appearance in the CST
unless this is specifically altered by the inclusion of an order number before
the relevant heading. E.g. ~1D,,I6,") ‘. In this case the order number is
superfluous because the channel would appear first on the page if the ordering
were to be omitted.

CONVERSION 22 17 May 84

Transfer Design

8.11) Limits, Absent Data Values & Flagging

Limits can appear both in the "A" file and in the "B" file. In both cases it is
possible to specify an absent data value (though not dynamically at present)
which can be taken into account when assessing the limits. This is important
because, of course, in those cases where absent data values are used they are
specifically selected to be outside the normal range of values.

When an absent data value appears it will generally be necessary to substitute
the value given with the one used as standard by MIAS. To conform to MIAS usage
it will also be necessary, assuming the channel has an associated flag channel,
to provide an ‘N’ within that flag channel. These requirements are met by
operation 21.

8.12) "A" File Options & Suppression

The options present in the "A" heading - ’‘F’ and ‘FTML’ in the example -
indicate respectively: Flagged, Transfer-suppressible, Merge-suppressible and
Limits to be computed. Channels are normally suppressed if the channel is
constant but by omitting the ‘T’ they can be retained in the "A" file (one might
want to do this to ensure that all series have the same parameter set). An ‘M’
causes the channel to be identified on the series header form by its position
(ordinal) within the file. If the screener wishes to have the channel
suppressed at Merge, this can be done by entering the ordinal within the
appropriate field on the form.

8.13) Input of Source stored by Parameter

Not all source formats conform to the simple datacycle pattern; sometimes, as
has already been mentioned in the discussion of PXF, the data of the same
parameter is grouped contiguously, or the format may be based on PXF or a close
derivative.

To cover such cases a different mode of input is required. In such cases the
header module will in general be wused to preprocess the input file to an
intermediate file whose format is effectively PXF. The usual cycle module is
either absent, or, though still referred to as a cycle module, is replaced by a
module whose functions are to process a work array (see Transfer
Implementation).

9) Transfer Implementation

In this chapter we outline significant aspects of implementation, beginning with
CST analysis. Other topics include the use of ‘vectors’ and the dynamic
allocation of space. To achieve satisfactory testing much of the complexity has
been placed at a low level allowing the high level modules - the ones that are
difficult to test - to follow, for the most part, a simple linear logic.

CONVERSION 23 17 May 84

Transfer Implementation

9.1) CST Analysis

Composing a CST is not necessarily a trivial task as typically it may require
the specification of perhaps 20 or 30 channels (see appendix D): the problems
encountered are the same as those of programming in general, viz the provision
of grammatically correct, detailed information which is true to the wishes of
the originator - wviz bug-free. The requirements of a CST analyser are those,
essentially, of a compiler: in particular it should provide sufficient feedback
to allow the user to identify his errors quickly, and the (compiled) output
should be in a form suitable to drive the various aspects of the Transfer
process.

Channels are normally chosen to lie in the sequence 1 to N where N is the total
number of channels. Where this is not the case a warning is issued and the usage
of space within the compiled output is less than optimal. N must be less than
256. This 1limit can be seen to be roughly in step with that imposed by the
adoption of PXF (or QXF) as the format of the "A" file, when it 1is remembered
that to each output channel there may correspond binary, flag and character
channels, and that not all channels need be incorporated in the one series.

9.2) Use of Vectors in Transfer

The output of the CST analyser is in the form of a ‘vector’. This 1is NOT the
usual mathematical construct, but a storage structure that has been introduced
to overcome a well known deficiency in the Fortran language - here the failure
to provide a storage device more complex than the array. Some of the vectors in
use in the Transfer system could be emulated by, for instance, the use of the
PL/I data structure, but this not true in all cases.

As each vector type, and there are essentially four, has associated access or
interface software which represents a significant fraction of the total Transfer
code, it is worth pausing a moment to understand why this particular approach
has been adopted. The alternative might be, for example, to use named common.
There are at least three problems which arise with named common:

1) The software (instructions) becomes 1inextricably linked with dimension
- through the compilation process. If one wants to change dimension one must
recompile. Such considerations are trivial in small systems but become
increasingly important as the system grows. It makes it difficult to
distinguish between a true change and one undertaken for the purposes of
compatibility. To some extent this may be lessened by increased
fractionation of the common areas.

2) Argument lists are an important adjunct to programmer comprehension and
their potential removal or diminution by the incorporation of named common
is not to be passed over lightly. Equally though, (excessively) long
argument Jlists can be as bad in this respect and a fruitful source of
error.

3) The third point is an extension of the first. In choosing a dimension one
is frequentiv in a position of trying to specify array sizes which are not
likely to be exceeded. Not only is it difficult to conjecture appropriate
limits but the applications vary so much in their requirements that one is
inevitably going to waste a great deal of space in the wvast majority of
cases.

In large measure the use of vectors obviates these problems: software
modifications can be localised, space can be allocated dynamically and
programmer comprehension 1is served by allowing argument lists which are
reasonably succinct.

CONVERSION 24 17 May B4

Transfer Implementation

As an example of the use of a ‘vector’ in the sense used here, consider the
following three lines of Fortran:

CALL SUB(NMAXAR,NUSEDAR,ARR,COMPUTED,IERR)
and

CALL SUL(VECT,COMPUTED, TERR)
EQUIVALENCE (VECT(I),NVAXAR),(VECT(Z),NUSEDAR),(VECT(B),ARR(I))

The second CALL is obviously more compact, but at some stage something akin to a
packing operation 1is needed, as evidenced here by the equivalence statement.
However, NMAXAR, NUSEDAR and ARR have a functional association unlikely to be
broken in application, as the first argument specifies the maximum number of
entries in the array and the second the number actually wused. The VECT
construct neatly embraces this aspect of the situation and removes unwanted
detail -~ three arguments have been replaced by one - facilitating the wuse of
deeply nested calls. In the case of Transfer this nesting can be 7 deep
(excluding system routines) and some vectors have considerable complexity with
the detail suppression nearer to ten or fifteen to one,

Another important factor within the situation is that, in the software labyrinth
that one inevitably constructs, the traversal of array bounds can result in
severe bug-detection problems. In the absence of suitable system aids in this
regard, attempted transgressions must be satisfactorily monitored, and this can
be done through the use of the vector interface routines checking against the
internally defined limit (by the inclusion of the limit as the first word in the
vector, as in the above example). The incorporation of these array bound
monitors has proved most effective, and, it should be noted, even if one were to
use common one would still need “interface’ software for these checks.

9.3) Channel Descriptor Vector

The output of the CST analyser is the Channel Descriptor Vector (CDVec). The
vector contains an index tc assorted ‘sections’ with each section identified by
an 8-character sequence. Examples of sections are:-—

IDENTIFR Holds channel identifiers

ADATCH Holds "A" file channel data (8 words per channel)

AFLGCH Holds data on explicit flag channels (1 word per channel)
DFSECT Holds '"D" file channel data (10 words per channel)
GENTRANS Holds transformation information (variable number

of words per transformation)

A low-address initially null fixed area of the vector is set aside for the
index. As each section is created it is allocated an address immediately above
that already allocated. Space allocation can be done dynamically in the sense
that all the space remaining within the vector is available to a new section and
the boundary for subsequent allocation is determined by the highest referenced
address within that section at the time of allocation of the subsequent section.

9.3.1) Bit Masks

To indicate which channels are actually present within a series, use is made of
a bit mask - the series bit mask. The n’th bit is set on if the corresponding
channel within the CST is included within the series. Bit masks are compact
logical arrays and wusing specially written software can be combined under
recognised binary operations - viz AND, OR, XOR.

CONVERSTINN 25 18 May 84

Transfer Implementation

Several bit masks are employed in Transfer, chiefly in the context of channel
suppression. (Mask handling is also a significant feature of SMED software).

9.4) Datacycle Processing

9.4.1) Work Array

Datacycle processing within Transfer is batched. That is to say the cycle module
or its equivalent 1is called a number of times sufficient to fill up the work
array with data, space of course being left for the outcome of the processing.
All the relevant operations are then executed on this array to effect the
desired transformations and to derive the desired information. The data is then
written to the relevant files and the whole process repeated until the series is
finished.

The work array is divided into three parts - binary, character and formatting.
The binary section, or rather the low address end of it, is destined for the "A"
file, the character section is destined for the '"D" file: the formatting
section 1is an area of about 4000 bytes set aside for binary/character
conversion. The binary work array is divided into columns of equal length.
Because it is dedicated to the processing of batches of data destined for a PXF
file, this column length is chosen to be a multiple of 64, eliminating array
shunting (between batches) within the binary section. Shunting is only required
in those (rare) cases where more than one datacycle column appears on the '"D"
file page (because the page cannot be generated by writing one datacycle at a
time - e.g. a two-datacycle page would normally require 100 datacycles before it
could be output).

9.4.2) 1Input
Refreshing the work array is the function of the input module. This wmodule is
‘driven’ by a vector - EAVEC - relating position in the array(s) returned by the

cycle module to the position within the work array.

9.4.3) Datacycle Processor

Operations to be performed on the work array include those defined explicitly in
the CST (i.e, defined in the GENTRANS section of the Channel Descriptor Vector).
Others, such as limit determination, listing of binary channels and the packing
of explicit flag channels are added as and when required. These operations
together with the associated data are packed into a vector - TOVEC. The contents
of TOVEC are interpreted by the ’‘datacycle processor’ module.

This module unpacks each entry of TOVEC in turn and, wusing a computed GOTO
statement, branches to the routine whose task it is to perform the operation.
There is a one-to-one correspondence between the routines - whose names follow a
simple nomenclature (TOPRnn) - and the operations.

9.4.4) Operation Routines

The operation routines are fairly standardised in respect of the argument list.
This specifies the number of cycles to process, the names of the binary arrays,
the character work array and pointers to within the character work array, a data
array and an option.

Each routine is optimised for efficiency so that in most instances the option
controls a computed GOTO which has branches to a number of similar DO-loops.

CONVERSION 26 18 May 84

Transfer Implementation
Such routines can be written and tested with great speed. Within the datacycle
processor, the binary array names are substituted by phrases of the form:

WRK(POINTER)
where POINTER (integer) is determined from the related channel and cycle number
where POINTER (integer) 1is determined from the related channel and cycle

numbers.

9.4.5) Principal File Output from System

Character information can, as far as a single-page spread is concerned be
written straight to the "D" file. 1In other cases it is written to a random file
whose elements can subseqently be accessed in the right order to produce the 'D"
file tape.

Binary datacycle information is always written to a random access file because,
in general, there will be a need to effect channel suppression.

9.5) Channel Suppression

The requirements of channel suppression are quite a severe complicating factor
in the design. The header for the "A" file is only prepared once it is known
which channels are actually to be included. In the case of disk output, an in
situ compression of the datacycle portion of the file is required to eliminate
the unwanted channel(s); whea the output is to tape, these channels are simply
omitted in the copying process.

9.6) Transfer Intermediate File

The Transfer Intermediate file is an information duct between the header and
trailer modules and the Transfer system. Most of the control and all the header
information is funnelled through it.

Information in the Intermediate file is handled through a tag system - each line
of information written to this character file begins with a four-character tag
or label which can be thought of as determining its eventual destination. Use of
this system eliminates (from the modules) much of the complication implicit in
achieving a correct ordering within the "B" file output.

As an example, consider the following familiar problem which might occur in a
header module. It is desired to write the number of items as part of a title
string above the items to be printed:

3 ITEMS FOUND AS FOLLOWS:-
ITEM1
ITEM2
ITEM3

Unfortunately all the ITEMs have to be processed before the number (three) can
be determined. This would normally require two passes of the data, but the
process can be transformed - by using the tagging system - into a single-pass
programming job. The entries to the Intermediate file might be as follows:

0602 ITEM1
0603 ITEM2
0604 ITEM3

CONVERSION 27 18 May B4

Transfer Implementation

0601 3 ITEMS FOUND AS FOLLOWS

The two leading digits of the tag identify the "B" file segment and the two
trailing characters the position within the segment.

The "B" file record is constituted of segments 1 to 8. Records with tags

beginning with 10 or a greater number carry control information and do not
appear in the "B" file.

9.7) Transfer Intermediate File Vector

Once information has been written to the Transfer Intermediate file (by the
header or trailer module), the file is rewound and the contents are entered to
the Transfer Intermediate file vector. The tags are placed within a special
index space set aside at the beginning of the vector, with remaining information
being loaded sequentially thereafter. Prior to output the tags are sorted.

The vector acts therefore as a readily addressable store for a set of non-

uniform records: operations to be performed on the vector are mediated through
the associated interface routines.

10) Ancillary Operations

10.1) Conversion Central Index

Once the series has passed through Transfer a link must be established between
its various identifiers. These identifiers include IPS number cum accession and
subaccession, inventory sequence numbers and the MIAS series reference number
(MSR). These identifiers are held together in the Conversion Central Index.

The first step in establishing the link is to produce a form of IPS numbers and
CSHOIDs against which the person doing the work can write the inventory numbers.
This form is produced by a standard utility using the Transfer status file as
input.

Once completed the inventory numbers can be keyed into a file and entered to the
Central Index. The software used to update the Central Index allocates the MIAS
series reference numbers in the process and also updates the inventories (for
those inventories that have the ‘acquire field’) to show that the series has
been acquired. (The software therefore reflects the MIAS policy which, in
general, 1is only to declare that series are available (acquired) once they have
been Transferred.)

It is not a requirement that all series registered within the 1Index have an
inventory reference. Some series, because they span a broad range of
parameters, can feature in more than one inventory - a databuoy, for example,
may measure wave activity, currents at the sea surface and barometric pressure.

The Central Index in the current configuration consists of 48-character records
held in a sequential file with one header and one trailer record. Additional
records are appended. The inventories are normally random access files with no
header.

CONVERSION 28 . 18 May 84

Ancillary Operations

10.2) Concentration Tapes & Tape Index

For reasons of convenience and security the "A" file tapes are appended to
‘concentration tapes’. This procedure allows the number of tapes which have to
be referenced by Merge, calibration and screening software to be much reduced
(to the order of 10 at time of writing with up to 500 series per tape), and also
fulfils the requirement of providing the necessary backup for these files.

Each subaccession is copied in toto to a concentration tape. An index - the Tape
Index - 1is established which holds one record per subaccession. A record
specifies the number of the concentration tape, the accession, subaccession and
the TIPS number of the first file of the subaccession, and the position of that
file on the concentration tape.

10.3) Code 7ables

Many database field values are supplied from specific code tables (Cnn). For
example it is necessary to specify the datum to which depths are referred. Such
datums include: mean sea level, lowest astronomical tide or the instantaneous
level of the sea surface. A one-character code identifies these and other
possibilities. Another example would be the 4-character code identifying
parameters. E.g. current speed, wave height, sea temperature.

There are more than thirty such code tables and there is an associated system
for their wupdate and presentation. For processing purposes the tables’ content
is held in a single randomably accessible file. SMED software interfaces to
this file,

10.4) Datacycle Editing

In screening data, MIAS make judgments as to whether individual data values are
to be regarded as permissible, even though the originator, by implication, has
accepted them as being realistic and a true measure (within an error bound) of
the physical environment., For example it is possible to compute a theoretical
limit on wave steepness which effectively rules out certain combinations of
periodicity and wave height. If a supplier nonetheless presents a series in
which such impossibilities occur, MIAS has to take action to flag or modify in
other ways the individual values concerned. It is as well to note though that
data values are only modified by recourse back to the originator.

An elaborate system for the specification of such edits to PXF files has been
established. The screener idzntifies the file, parameter, cycle or cycle numbers
of the values he wishes to alter using a special syntax. The edits are keyed
into a file which is processed, in timesharing, to spawn a batch job. The batch
job may consist of up to 3 activities performing the following functions.

1) 1f the PXF file is not already on disk it must be set wup initially by
copying from the concentration tape. Also if the file has become corrupted
and the user wishes to start afresh then he can do so. This is the setup
activity.

2) The edit activity. Files to be edited must be on disk. The file names are
altered to reflect their status as edited data. Operations coded into the
editor include: flagging specific data values, flagging values exceeding a
given limit, replacing data wusing a linear function of itself, etc. The
edit activity has the option of producing a microfiche 1listing of the
(entire) edited file.

CONVERSTON 29 18 May 84

Ancillary Operations

3) Plot spawn activity. The activity can be used to initiate the execution of
a plotting program. The spawned program plots the edited data.
An example of a production edit file is given here.

OTDISK=I0S03
UMCPRFX=MIAS/INO3

/ISR830081/NC10380 Define accession/subaccession
S=CH(LCSA1101) Abbreviation for channel name (speed)
F=FLAG() Define flag for explicit flagging operation
Z=FLAGEXCS(F='M’,T='N",L=1.59) TFlag all speeds resulting from 0 counts
/1PS30200

S Z1- Flag all speeds satisfying the criterion

S F 25

/IPS30800,PLOT Plot required

S Z1-

S F 350,750,752-754,887,1497,1507,1793,1799,1853,1906,1910,2029,2031
S F 340-343,1418-1419,1429,1433,1466,1467,1472-1489,1492-1496

10.5) Calibration

Most data supplied to MIAS has been calibrated. That is to say that original
instrument counts have been converted to, say, SI units. MIAS undertakes to
calibrate wuncalibrated data where there exist problems of obtaining the
calibrated version in computer-compatible form.

It was intended to combine the operation of calibration with SMED processing but
to date this has only occurred in one instance; normally ad hoc solutions have
had to be developed. The processing can be extremely time-consuming because of
the need to prepare — particularly in the case of direction tables - extensive
quantities of manually assembled data, and is to be avoided if at all possible
(one is undertaking the supplier’s job for him!).

11) SMED Requirements

11.1) Introduction - Header Information on the Base

Header information present on the source tape is generally insufficient when
matched against the precise requirements of the database. On the database the
series is stored as a number of subseries under a series header record. The
series 1is linked to documentation through a set of pointer records, the pointer
records recording the reference numbers of the associated documents.

Database access paths to the series include Data Activity, Project, Fixed
Station, Parameter and Parameter Set. The series can also be accessed
geographically by one degree square.

To support these paths, the associated Data Activities, Projects, and other

items, of which the Parameter Set is mandatory, must be created and the link
established.

CONVERSION 30 18 May 84

SMED Requirements

To take an example: an international experiment was conducted 1in the North
Atlantic in the summer of 1978 - JASIN - resulting in the recording of a large
number of instrumentally measured time series. This aggregate can be represented
on the database by creating a Project record — the JASIN project record - and
then linking all the series of the JASIN project to it. To achieve linkage, the
series Load program, which creates the necessary database linker records, must
be informed which Projects are associated with the given series, and this 1is
done by simply citing the reference numbers of the Projects concerned. Similar
steps can be taken in respect of Data Activities and Fixed Station records.

Equally to provide narrative information relating to a series, a document can be
written to which a unique number is assigned. The document is Loaded to the bank
(through a separate Load process) and the number is recorded in the above-
mentioned pointer records.

It is the function of the people looking at the data - the Screeners - to
prepare the header, the associated commentary (Narrative Documents) and linkage
information for each series. Clearly the database is crucially dependent on the
accuracy of their work and a satisfactory system for preparation must be
supportive of their efforts.

11.2) Functional Requirements of Series Header Preparation

The series header record is large, larger in fact than can be accommodated on,
for instance, a standard printout if one were to write it out as a single line.
The fields should be labelled, and there needs to be some means of indicating
which fields are incorrect.

In preparing the header one may be encoding fields which have counterparts
within the series header on the source tape. The values may or may not be the
same. If a value is different one would 1like to be informed of the fact.
Equally, 1if the field values as specified in the inventory and source tape are
known to be predominantly identical, one wants to avoid manual transcription in
the preparation.

Inventories appropriate to particular data types - e.g. CTD, Waves, CMD - need
to be established before a program of banking can be wundertaken. These
inventories will record such information as 1location, start time, duration,
parameters measured, etc., of the series. These fields overlap the fields of
the series header and monitoring the differences in field values is one way in
which the Screeners can check the correctness of their work. If a difference is
detected, of course, it may well be that it 1is the inventory that must be
updated.

Narrative Documents, prepared for a particular series, cover, for example,
accidental damage, magnetic variation, timing correction and the like, and are
written at the same time as the header 1is prepared. Other documents are of
global application describing say, the data processing methods, and may already
be banked.

The system is potentially vulnerable to typographic error because of the use of
integers as reference identifiers: such identifiers pose problems for the human
memory and one needs to guard against digit transposition.

As new data types are banked new parameter sets, and possibly new parameters
must be installed on the database: however the actual volume of information,
measured by, say, bytes, is extremely small when compared to that encountered in
the context of Documents or series header records and a processing system as
such is not really required: one simply encodes the 1information by hand and
Loads it to th= base.

CONVERSTION 31 18 May 84

System Qutline - Series Header Preparation

12) System Outline - Series Header Preparation

SMED breaks naturally into two parts: the Series Header preparation system,
which 1is the more extensive of the two, and an auxiliary system concerned with
the preparation of documents, Data Activities, Fixed Stations and Projects. In
this chapter we outline the former.

12.1) Storage

Series header records are loaded to a Stack. The Stack is an assembly of random
access files interlinked through pointers. The individual records may either be
accessed sequentially or, more rapidly, by hashed access on a specified key. (It
is as well to emphasize that the term ‘stack’ used here is somewhat at variance
with its normal connotations in computer parlance, viz a software device for
storing program variables, preserving precedence, in high speed memory.)

The concept of the Stack was thought to be potentially valuable outside the
present context so it was generalised to the extent of allowing the nature of
the key, record size and hashing function to be chosen at Stack-creation time.
Whether the record is or is not subdivided can also be specified at that time.
If the record is subdivided, there is the possibility of allowing arbitrary-
sized records - implemented by a system of chaining.

All the stack software 1is written 1in Fortran with a subset of routines
constituting the user-visible interface.

In simple applications where there is no chaining of the aforementioned kind the
total number of records is limited to about four thousand records (2**12).

12.2) Series Header Fields

The Conversion Series Header record subsumes (to a large extent) the following
database records: the N680 (Series Header) and the N659 (Subseries Header). It
also includes the linkage information to Data Activities, Fixed Stations and
Projects to the extent of allowing up to nine references in each category (the
database imposes no limitation), and up to twenty four references (N676 records)
for Data and Narrative documents (ditto).

In addition there are further fields which are used for controlling the Merge
program and, potentially at least, fields relating to calibration.

12.3) Series Header Presentation - PRODFORM

The PRODFORM program is used to generate forms for the collation of header
information. Each series header has a complete page of printout dedicated to
it. A standard “box” (see appendix B) is used with the majority of field slots
within it clearly identified. Where there is no data the slot is left blank,
otherwise it is filled, according to prescribed rules of precedence, with
information taken from the '"B", default or inventory files. 1In cases of field
overlap, it checks for and keeps count of, the number of discrepancies in field
content. Discrepant fields are underlined.

The Screeners thten use the form so produced as the basis for much of their work.
All the comments pertaining to the individual series should, at least in theory,
be entered on the form, which has space for the inclusion of manuscript at the
right hand side.

CONVERSION 32 17 May 84

System Outline - Series Header Preparation

Beneath the form, appears information - generated by Transfer - under the
appropriate headings. Warnings are posted at the top of the page to the right of
the box.

12.4) PRODFORM -~ Field Tagging

PRODFORM has been written in such a way as to be independent of source format.
This 1is achieved in part through the system of tagging employed in the "B" file
and elsewhere. Inventory information is accessed through purpose-built modules
(one for each type of inventory) which convert (packed) field data into this
form. The tags identify their respective field slots (i.e. the area between
brackets) within the box.

The box is stored in a file (actually a number of files) followed by a simple
field descriptor. Within this file the slots are delimited by Escape character
sequences and the descriptor identifies the slots, in text order by the
associated character tag. PRODFORM reads the file in, eliminates the escape
sequences and establishes a field (slot) directory. The field descriptor also
defines the field standardisation code and this is incorporated as part of the
directory.

The program is thus also largely independent of the exact construction and
positioning of the fields within the box.

12.5) Field Standardisation

Field standardisation is an important concept in SMED because it permits all the
header information, whether fundamentally character, integer or real (in the
Fortran sense), to be stored in character form.

It provides an agreed canonical representation for data: that is there 1is one
and only one way of presenting a given value within the standardised field. For
example, the number one might appear in a field as 1, 1., 1.0, or 1E0, but if a
standardisation is agreed only one representation of the number would be
allowed, say, 1.00.

Because there is a unique representation of each datum, a character-by-character

comparison of different values in the same field will reveal whether the values
are effectively different or not.

13) SMED: Stack Creation

Individual Stacks are created using an interactive program. The process requires
the user to supply the names of 3 files in turn: the record’s field descriptor
file, the load order file and a file containing the series header ‘box’.

All three files are held in a form amenable to processing with text editor.

CONVERSION 33 17 May 84

SMED: Stack Creation

13.1) Record’s Field Descriptor File

Fach Stack carries within it a descriptor of the data fields of which the
individual records are composed. The descriptor extends to those fields
appearing explicitly within the series ‘box’; it does not cover the record’s key
and sundry other fields 1like date and time whose format is essentially fixed
within the system. FEach line of the file specifies a separate field and begins
with the field tag (this is the same tag as is used by PRODFORM), an indication
of field size and other items intrinsic to the field. The file 1is checked and
processed to yield a compact table - suitable for direct lookup - and stored in
the user area of the Stack.

13.2) Field Load Order Descriptor

The field load order descriptor describes the order in which fields are present
within keyed data (see SMED load). It is checked and processed to yield a table
of pointers, the pointers being to the table alluded to in the preceding
section.

13.3) Print Form File

The print form file contains sections of the series ‘box’. As the field
descriptor contains positional references to this form, crosschecking is carried
out to ensure that the two files are consistent.

14) SMED Input- Keying, Loading & Verification

To get from the Series Header form to the Stack involves a number of steps. The
procedure 1is geared to large data quantities and is somewhat cumbersome if only
a small (<10) number of forms is involved. The first step is done offline wusing
a specialized terminal with 1local sequential storage (HP2645 or HP2648 with
cartridges).

14.1) Input Form

A form, equivalent to the series header box of the series header form, is set up
on the screen. Field slots are ‘unprotected’, so that when form-fill mode is set
on, the cursor moves from slot to slot as the fields are keyed in. At completion
of the form, a button 1is depressed and the data from within the slots is
transferred to cartridge.

35 to 40 series headers can be stored on one cartridge. The cartridge content is
then PULLed (PULL is a timesharing command) onto the Honeywell mainframe.

14.2) Verification

Where it is deemed necessary, it is possible to key the data twice and have the
SMED system perform a comparison between the two versions to eliminate
typographic error. To prevent easy cheating, the two versions require two
slightly different forms - designated 1left and right. The forms differ in
respect of additional, so-called transmit-only fields. Such fields are not
normally altered by the operator and are placed so that it requires rather more
than a simple edit command on the derived file to transform one version into the
other.

CONVERSION 34 18 May 84

SMED Input- Keyving, Loading & Verification

In the absence of verification, the left hand version is the one conventionally
used.

14.3) SMED Load

The sequential files are loaded to the Stack with a special timesharing load
program. Only one Stack can be accessed at one time. Each sequential file can be
loaded in whole or in part, depending on the choice of the operator.

To initiate verification the operator will reply ’‘yes’ to the query ‘Verify?’.
The program determines the key of the record it is to load and then searches the
Stack for the corresponding record of the opposite handedness. If one is found
the newly read record 1is compared with that held on the Stack with any
discrepancies being adjudicated by the operator: the discrepant fields are
identified and the operator is asked to fill in the field values - by reference
to the manuscript form.

The newly keyed value is accepted if it agrees with the value of either version,
or failing that, if the same value 1is keyed twice. As a necessary aid to
understanding of the cause of the error, the errant field value is displayed
once verification has been achieved for the field.

Keys for the respective record types differ by one character - L, R and V. Once
the record has been verified the L and R versions are deleted from the Stack.

14.4) Reductior in keying.

It is the practice to reduce the number of fields actually keyed by designating
the fields which remain constant between series as transmit-only. Normally this
is done using a highlight pen on the first sheet and the keying supervisor
adjusting the form accordingly (2 or 3 minutes work).

This has the effect of reducing keying time to somewhere between 1 and 2 minutes
per form per version; a time which is insignificant in the context of the total
staff time required for series conversion. Tt does not reduce the bulk of the
data stored in files.

15) Series Header Stack Processing

The Stack processor is used to mediate, either directly or indirectly, all
processes connected with the records on the Stack with the exception of the
aforementioned load.

The operator uses the processor either to spawn batch jobs, such as series
header print or Merge, or to process the records directly in timesharing. The
procedure is to select the records of interest and then to apply the appropriate
command or commands. The command syntax is fairly compact and is angled towards
the more experienced operator. There is however a "HELP" command which when
invoked lists all the available command mnemonics.

CONVERSION 35 17 May 84

Series Header Stack Processing

15.1) Selection - Record Key

Selection is done on the basis of matching certain segments of the record key.
As this key incorporates the accession, the subaccession, the IPS number, the
version (L, R or V) and the source format number, the user can frame relatively
succinct selection commands appropriate to the domain of interest. In
particular the user can work with the individual records, or at the accession
level.

Once the command has been acted on the user has defined a ‘standing set’ and is
free either to manipulate it with further selection commands (such as combining
it with a further selection) or to process its records. The standing set is
usually ordered by IPS number.

15.2) Record Appraisal

To assist in defining the standing set of interest, there are commands to list:
the record keys, the records’ status sections and specific sections of the
records themselves. In fact it is also possible to define selection criteria
based on the status of the record (e.g. has it failed a specific check, has it
been differenced in a particular way, etc.?); an ability to select records on
the basis of specific field values has yet to be implemented.

15.3) Default Differencing

As explained elsewhere the default file consists of tagged wvalues. The
nomenclature employed in naming the file identifies both the source format and
the accession and these are checked against the corresponding parts of the
record keys.

The default file is regarded as valid provided its field tags 1lie within the
record’s field descriptor (q.v.) defined for the Stack in question. The fields
of the default file are compared with those of the selected records and for each
of these fields a bit is set on. . A second bit is set on if the value is
different (after standardisation). These bits are part of the status
information present within each record. The date/time of the operation is also
recorded to the nearest 5 minutes.

15.4) "B" File Differencing

This is essentially similar to that described above, the only difference being
that the identifiers for the file are held internally and so each record is
checked against its individual "B" file record (segments 1 and 2). Because the
"B" file 1is sequential, efficient processing demands that the standing set be
ordered in the same fashion as the "B" file records - namely IPS ordering.

15.5) Inventory Differencing

The Central Index is accessed and a vector of inventory and jnventory sequence
numbers is built up. The inventories are then attached and accessed to produce
a file similar in content to a "B" file. This 1is then passed through a
comparison routine in a manner similar to the other difference operations.

CONVERSION 36 17 Mav B4

Series Header Stack Processing

15.6) Checking - Intrinsic Checks

Fields within the record are subjected to checks of wvarious sorts. Intrinsic
checks are those in which the individual field is assessed independently of the
wider context. Thus there are many fields within the record which have as
entries the values of certain code tables (gq.v.). It is natural to ensure that
the field value actually belongs to the code table in question.

Another type of check is to see that the integers used to identify, for
instance, the Parameter Set or the Series Reference number itself, satisfy the
modulus-eleven check of the appropriate type (see discussion of reference
numbers in the section on NSH processing for a fuller discussion of this type of
check).

Dates, times and positions can all be assessed for legality. All fields in the

record have an intrinsic check associated with them. If the field is invalid
the corresponding intrinsic check bit is set on.

15.7) Checking - Extrinsic Checks

Once the record has been assessed as intrinsically valid, some further checks
can be made to ensure, for example, that the date/time of start precedes that of
the end. Similarly it is natural to check that the count of the end datacycle
follows that of the start cycle.

Such checks are referred to as extrinsic checks. Fields which fail an extrinsic
check have the corresponding extrinsic check bit set on. Note that, in
contradistinction to intrinsic checking, it is possible for one field to be
involved in more than one such check, so that it is necessary to identify which
check it has failed.

15.8) Checking - Other Checks

In future implementations it may be found desirable to widen the context of the
checks to cover other files. At the present there are no checks additional to
those discussed above.

15.9) TField Modification

Fields to be modified can be identified in one of three ways. The wuser may
either give the shortened field name, or its position on the form (the form is
line numbered and it is a quastion of counting the number of fields to define
its position in the 1line) or the extended 8-character name. The field can be
altered globally; that is to say all the records in the standing set can have
the field set to the prescribed value; or individually; in which case the user
can scrutinise and vet the change in each record.

The user is not limited to specifying the changes one field at a time. Most
importantly, changes can be verified before being accepted as final, and
furthermore may be displayed alongside the existing value to provide
satisfactory cognitive support to the would-be field changer.

In changing a field the count of the number of changes on that field in that
particular record 1is incremented. Also incremented is the total overall number
of changes perpetrated on the record. The software also keeps tabs on the number
of fields which have been changed and the maximum change assessed over all the
fields of the record.

CONVERSION 37 18 May 84

Series Header Stack Processing

15.10) Job Spawning

Currently four types of job can be spawned. These are the series header print,
the field crossreference , record delete programs, and Merge.

In each case, once having indicated which program is to be spawned the user is
asked for the relevant information (such as banners, titles, accounting
information and the like).

There are two types of job spawn: those jobs that involve tapes and those that
do not. The user can spawn an arbitrary number of jobs in one session with the
processor, but the jobs are only entered to the batch world at session
termination (because the Stack is not available till that time) either
automatically or made available as a temporary file depending on the wuser’s
choice. The latter represents an important patch capability because the file
can be altered, at will, prior to submission.

There is also a command to allow the user to start from scratch if need be. Thus
if the user knows that there is something wrong with his spawn file he does not
have to wait till session termination to do something about it.

15.11) Merge Spawn

To spawn a Merge program, the selected records must be in a Mergeable state.
That 1is to say that all the difference operations must have been performed, all
the checks must have been applied and satisfied, and a crossreference and a
record printout must have been produced subsequent to the last change.

The related spawning module checks these conditions and indicates those records

that fail it.

15.12) Crossreference Program

The crossreference program prints out a. table of values occurring in each
(designated) field and against each value prints the number of occurrences and
the abbreviated IPS numbers (dropping the two trailing zeros if present) of the
records in which the field assumes that value. Which fields are designated
depends, assuming no presubmission alteration, depends on the record’s field
descriptor (q.v.).

Where the record numbers are contiguous, they are expressed as a range, e.g.
030-041. Ranges and individual IPS numbers are separated by commas.

Each page of printout begins with a banner giving date and time, the stack name
and an operator-defined 40-character field.

15.13) Series Header Print Program

The Series Header prrint program presents information in the form of the series
header box (much as in appendix B). Status information is presented at the side
of the box. Date and time information of the individual operations is presented
below it. One page is used to present the information for one record. Fach page
begins with a ore line banner defining the date and time of production, an
operator—defined 40-character banner and the Stack name.

To each field in the box there corresponds 5 columns on the right of the
printout which are used for the display of the individual field status

CONVERSION 38 . 17 Mav 84

Series Header Stack Processing

information. Thus if, for example, it has been determined (by differencing) that
a field has a corresponding value in the "B" file a ‘B’ appears in the
appropriate column. This ‘B’ 1is wunderlined if the field values differ.
Similarly an ‘E’ or an ‘I’ is displayed in relation to default or inventory
information.

The field itself is underlined if there is a difference or if it is in error.
‘N’ is displayed for an intrinsic error and ‘X’ for an extrinsic error.

Beneath the box are displayed the date and time of the last application of the
standard operations together with the number of such applications. These
operations include: Loading and verification, printing (the previous occasion),
crossreferencing, the three types of differencing, the three types of checks,
and record modification and Merging. If the number of applications is zero, the
entry 1is left blank; if one, the number one is replaced by blank. Date
information is also ‘thinned’ by reference to that given above.

Other items displayed include: the inventory and inventory number (if known),
the total field count, the numbers of differences detected in each of the three
categories and the numbers of the extrinsic checks the record has failed and the
total number of fields failing the intrinsic checks.

The program concludes by listing the ranges of the IPS numbers printed and
indicating which were “Print Pending’ and which satisfied the Merge criterion.
It is important to note that a record does not have to satisfy any particular
condition, aside from existence, before it can be printed. The printout is
merely a recording of its state at a moment in time: in this the conditions for
the use of the program differ from that of the Merge.

16) SMED - NSH: Preparation of Series Ancillary Information

The initials NSH stand for Non-Series Header. The preparation of Narrative
documents, Data Activities, Fixed Stations and Projects are covered in this
chapter. Other record types have not appeared in sufficient numbers to warrant
developing a distinctive preparation system. They are coded in MSF (MSF is
covered in the discussion of the Merge program) and Loaded to the base.

16.1) Reference Numbers

Reference numbers are generated by a program written for the purpose and filed
in a single binder. These numbers conform to the modulus-11 check digit scheme -
one scheme for each type of reference. The check amounts to expressing the
number in decimal form and multiplying the individual digits by a specified
weighting - the weighting, which is essentially arbitrary, identifies the
scheme, viz Data Activity, Project, etc. The effect, roughly speaking, is to
identify only one in every 11 integers as valid within the selected scheme and
thus guard against transposition and other typographical errors.

Narrative, Series and Data Documents references are identified by 8-digit
numbers; the remainder by 5-digit numbers.

CONVERSION 39 17 May 84

SMED - NSH: Preparation of Series Ancillary Information

16.2) Narrative Documents

Normal text is typed onto a Hewlett Packard terminal screen and then PULLed onto
the Honeywell system. Documents begin with the reference number picked out by
the presence of the preceding “!’. Free format text follows on subsequent
lines.

Use is made of the document preparation system (ROFF) to fill the lines and to
ensure that no line is more than 75 characters in length (a GF3 requirement).

Once ROFFed the data is then checked for the presence of characters not in the
international set, and converted to MSF,

16.3) Data Activities, Projects, Fixed Stations

Information is prepared in tabular form and then keyed onto a Hewlett Packard
terminal and PULLed into Honeywell disk files in the manner already described
for Narrative documents. A single conversion program carries out checks and
converts to MSF

17) Merge Program - Requirements

17.1) Functional Requirements

We list some important functional requirements fulfilled by the Merge program.
Support for the processing of hydrographic data and its associated format (QXF)
has yet to be implemented though.

1) Generality. The first requirement is that the program should be capable of
Merging the data stored in all the PXF files which it is intended to Load
to the bank.

2) Efficiency. The program must be relatively efficient because it 1is
expected that the bulk of all MIAS data will pass through it at some stage.
Data volumes are such that the output must be directed to tape and to
ensure a proper wusage of the tape and to cut down the paperwork, a
mechanism needs to be provided to append data to a tape.

3) Segmentation. CTIMSS, CPOSSS (both fields in the N680 record) control the
segmentation of the series into subseries in the realm of time and space
respectively. TFor example in the case of a traverse series recorded by a
ship in transit, a new subseries would normally begin when a one-degree
square bourdary is crossed and this form of segmentation 1is dependent on
the screener choosing the appropriate code (CPOSSS = “S’). The case of
satellite data would generally require a different approach because of the
vast number of subseries records that would otherwise be generated. CPOSSS
would be set to “N’.

To keep the Load program as simple as possible, this segmentation must be
carried out by the Merge program (see also the linked topic of realm,
below).

4) Series Truncation. Not infrequently it is necessary to ‘lose’ datacycles
from the beginning and end of a series. Such series arise because the meter
may have to be switched on before it is deployed and cannot be switched off
again wuntil some time has elapsed following recovery. It is not generally

CONVERSION 40 17 May 84

Merge Program — Requirements

desirable for Transfer to effect this truncation, as datacycles once lost
cannot earily be replaced. Furthermore it may not be at all obvious where
the dividing line between relevant and irrelevant data is to be drawn - it
is something that the Screeners may have to deliberate on.

5) Datacycle Suppression. It is policy not to store null datacycles on the
bank (datacycles can only be accessed sequentially). Such null datacycles
must be intercepted by the program. A datacycle is null if the flag on the
independent variable is set to ’'N’.

6) Channel Deletion. The Screeners may decide that the channel derived from a
particular sensor is unsatisfactory. They can specify that it is to be
deleted by placing the channel number, printed in association with the
channel name below the series header form box, into the ‘channels off”’
slot.

7) Timing Channels. It is the usual practice to store date/time on each
datacycle of the series. Source tapes do not always provide this
information and so the computation is performed by the Merge program using
the date/time information provided on the series header form.

In other cases the originators may be either wrong in the sense that they
have made an error, or the time has been computed on a nominal basis. In
either case it will be necessary to re—compute the timing channel prior to
Loading.

8) Output Formats. There are two output formats currently supported - MSF and
PXF. MSF is a complete format in the sense that both header and datacycles
can be expressed in it. PXF 1is 1limited to the datacycles; the header
information must still be conveyed in MSF. PXF has the merit of saving two
binary/character conversions — one at Merge and one at Load - and requires
less storage.

MSF requires that the individual data value flagged with an ‘N’ in the
input file, must be set to zero in the output. Data values are expressed
as integers (after multiplication by the appropriate power of 10 and
rounding).

9) Realm Allocation. On Loading, the series header information is lodged in
the inventory section of the base. The datacycles are stored in large files
termed ‘realms’ usually identified with separate physical volumes. Privacy
requirements, geographical 1location, data type are three examples of
criteria which might be employed to band data into separate realms. In the
MIAS 1implementation realm allocation is done at the subseries level and is
decided on the basis of geography (e.g. one realm might be allocated to
North Sea data) in the belief that such a conjunction of series will be the
most apposite for Retrieval.

To save the Screeners’ time and to minimise error (and in the absence of an
explicit statement of realm), an algorithm is provided to compute realm for
each subseries.

10) Limit Determination. Because space/time limits are stored in the N680
record there 1is often a need for 1limit determination on space/time
channels; where PXF is the chosen output format, the program will need to
compute lirmits for other channels as well,

The area limits within N680 define the position at beginning and end of the
series, or they define, depending on the value of another field within the
record, a rectangular box whose 1limits are determined by the maximum
excursion measured ’‘parallel’ to the four principal compass directions.

CONVERSION 41 17 May 84

Merge Program - Requirements

11) Hydrographic Data. Hydrographic data represents something of a special
case, in that the series is likely to consist of a number of ‘stations’ and
each station appears as a separate subseries on the bank. The basic
information for this type of subseries is stored in an alternative
subseries record and is derived from the station entries of the QXF file.

12) Processing Order. It is important that the series are Merged in the order
in whicn the headers are identified and not for instance in the random
order in which they may be found on the concentration tape.

13) Series header print capability. It is important to provide the facility of
printing the series header at the time of Merge. Although this may be
dispensed with in the long run, such a printout captures the state of the
series header at the precise point where it leaves the Conversion system.

18) Merge Design/Implementation

The datacycle output of the Merge program is directed to tape, either in PXF or
in MSF.

18.1) MIAS Standard Format (MSF)

MIAS standard format is the format for the Conversion/Load interface, at least
insofar as header information is concerned. Datacycles can be also be written
in MSF, though because MSF is a character format, PXF is normally preferred for
this purpose.

One of the aims in establishing MSF was to provide the means whereby the user
could communicate directly with the Load program - by handcoding information.
Fach record, apart from comment and continuation 1lines, begins with the 4
characters identifying the record and is followed by a two-character instruction
code in columns 7 and 8. The linkage and data fields then follow. Records can
be broken at virtually any point and continued on the line following.

An example of part of a series record, in which the Load program 1is 1instructed
to add a series record to the series record chain and to link the series to a
Project (N130) and Fixed Station (N320), is given below.

N680 11 N130 4321 N320 4564 45678 C vovunn. >
11 is the appropriate instruction code; 4321, 456 and 45678 are the identifiers
of the Project, Fixed Station and Series respectively;> is the remainder of

the record. 1In practice the record would normally be followed by an N659
record, setting up a subseries header.

18.2) Merge/Load Interface file (MLT)

With each output tape is associated a Merge/Load Interface file. The file holds
the series header information - in MSF - for the series on the tape. It thus
acts as a directory. It also retains such information as: the tape number, the
tape density, the number of files on the tape, the time last referenced and so
forth.

Because the MLI has a copy of all the subseries header records, the Database

Administrator can readily assess which subseries lie in which realms and plan
his Load runs accordingly.

CONVERSION 42 18 May R4

Merge Design/Implementation

The file carries an abort indicator which is checked prior to execution. The
indicator 1is set on during execution and only turned off again at termination.
Aborts therefore leave the indicator on.

18.3) Program QOutline

The program begins by opening the appropriate Stack. Only one Stack can be
processed 1in one job. Other actions performed during the initialisation include
opening the MLT and positioning the output tape. The first series header is
accessed and the parameter set and disk/tape indicator are obtained. The
program then attaches the PXF disk file if the series is on disk or searches the
input tape if it is not.

The parameter set of the file to be Merged is subjected to channel suppression
and then matched against the parameter set of the output file using the first 4
characters of the parameter names. The two parameter sets are only permitted to
differ in one resnect. PXF files with no timing channel have a ‘cycle number’
channel (this is included to provide a safeguard in respect of the file’s
integrity) and this 1is converted to (linked) date/time channels by the Merge
program. Where it is necessary to compute or re-compute the timing channels the
necessary operations are encoded within a vector (see the chapter on Transfer
implementation for discussion of this term) - TRNSVC - which is used to drive
the Datacycle Processor module (see below).

The datacycles are processed in batches. A batch is read into a work area where
(virtually) all the necessary operations and datacyle transformations are
effected; it is then written to a (temporary) PXF file.

At the conclusion of datacycle processing, file header information 1is prepared
and written to the Merge/Load Interface file. For PXF the intermediate file
holding the datacycles is copied to tape: with MSF the datacycles are output to
the tape wvia a PXF/MSF conversion module. This module has the function of
inserting the subseries headers at the appropriate points.

18.4) Principal Merge Datacycle Operations

Operations needed to merge the series include: space/time 1limit determination,
limit determination on other channels (PXF), scaling and rounding (MSF), flag
packing (PXF) and segmentation. Note that the scaling factors are obtained from
the parameter file.

Only those operations that are actually required for the particular series are
encoded within the vector.

The datacycle processor module is similar in concept to the datacycle processor
module of the Transfer system (in fact the Merge program predates the Transfer
system and served as a testbed both in this and in a number of other respects).
In this case the processor manipulates a binary work array which is divided into
columns which can be identified with specific channels. There is no character
data as such. The low-address end of the work area holds the Merged output.

CONVERSION 43 17 May 84

Merge Design/Implementation

18.5) Segmentation

In the present implementation, subseries headers, depending on the options and
the type of data being processed, can be introduced following a change in month
or a change 1in one-degree square. Segmentation 1is therefore a matter of
monitoring the respective channels for changes and this is done by two routines
within the Merge datacycle processor module - one concerned with time, the other
with space. When a break is found the respective routines write to a
segmentation vector (SBSRVC).

Each element within the vector identifies a cycle count appropriate to the
(possible) start of a new subseries, and, either the one-degree-square (6-digit)
number if the break results from crossing a one-degree-square boundary, or, the
(h-digit) number of the year-month if it results from a change in month,
Through appropriate initialisation the segmentation routines can be used to
generate the numbers appropriate to the start of a series. Successive elements
may, of course, have the same break count if they are of different type.

The segmentation vector is used to drive the subseries header generation module.

At the time of writing a mooted extension for the database is to introduce a new
type of subseries record. This record would be inserted following a change in
the channel specifying “station identifier’. It is instructive to observe how
the Merge program might be adapted to support this feature. A routine would be
introduced within the datacycle processor module which would have the function
of looking at change in the stated channel. It would output to the same
segmentation vector, or possibly to a file if the data quantities were large.
The file or vector would then be accessed subsequently to generate the subseries
headers.

18.6) Program Options

One of the options normally invoked is to provide a series header printout in
the manner of SMED. When this is done the records of those series that have been
Merged are updated to reflect the fact.

This operation of listing the series headers is delayed until the last series
has been Merged, thus reducing the possibility of a system crash or other form
of abort corrupting the Stack, and consequently the need for Stack restitution.

A facility, normally invoked in debugging operations, is the provision of a
complete annotated listing of the transformation vector — TRNSVC. As much of
the software is concerned with the preparation of this it provides an important
window on program function and malfunction.

19) Acknowledgements

Acknowledgments for programming support are due to Brian Hains, Trevor Sankey,
Lesley Rickards and Andrew Tabor. Roy Lowry coded much of the Transfer system
and is currently responsible for Transfer processing. The 015 logical mapping
document given in the appendices is his.

CONVERSTON L4 18 Mav 84

APPENDIX A

System Documentation

A reference for the paper by Jones and Sankey is given below: the remaining
documents are internal to MIAS.

Records and fields of the MIAS database have been defined in MDBS/STND/12.

File nomenclature for the Conversion system is specified in MDBS/STND/13. The
PXF standard is defined in MDBS/STND/9, QXF in MDBS/STND/15, MSF in MDBS/STND/4.
"B" file format is covered by MDBS/CONV/14.

Documents directly relating to Transfer have the designation MDBS/CONV/TRNS/n.
MDBS/CONV/27 sets out the considerations involved in establishing a Logical
Mapping document. (A logical mapping is to be found in appendix D of the
current document).

SMED, including the Merge program, is covered by the MDBS/CONV/SMED/n series.
MDBS/CONV/SMED/6 is an introduction to Series Header processing and contains a
number of diagrams which the reader may find helpful.

The user interface and overall design of the stack system is specified in
MDBS/CONV/STCK/ 2.

MDBS/CONV/PXFEDT/1 provides a specification and user guide to the PXF editor
system. MDBS/GNRL/CODES/1 specifies the system for the update and presentation
of code tables.

JONES, M.T. & SANKEY, T. 1979 The MIAS oceanographic database - an
integrated database/data dictionary system.
pp. 69-95 in, Database Achievements, (ed. G.J. Baker).
London: A.P. Publications Ltd. and the British Computer Society. 128pp

CONVERSION 45 17 May 84

APPENDIX B

Series Header Form

The series header form shown below is in most respects identical to that used by
the screeners for the assembly of header information. Versions of the form are
stored in SMED stacks and on HP 2645 cartridges, the latter being used for input
purposes.

* gseries header contents and linkages mdbs form/7 *may 78% *
Khxhkhhhhkhhhhkhhhkhddhhhhhhhhhhkkhdhhhdhkhhdokdodddkdhddsdk ks ok deok ok ded sk s d ok ok sk ok ko
* mias ser ref () country () prim.d.cat () *
* orgntr’s ref () orgnztn () sec. d.cat () *
* intrntnl ref () privacy () instrm.cat () *
* mias accen no (- - YO dm realm () mount..cat () *
KkkkkhkhhhkhhAhRhhhhhhhhhddkhdhhkdddkkkoodedtdod e deddo ook o s ok ok b sk ok ok o ok o ook e ok ok ok ok ok ok ok ok ke ok ok
* d ddd mm.mm h *
* () latitude A (X - . =) yy mm dd hh mm *
* longitude A (- . =) start time (- -)(-) *
* qu latitude B (X - . - end time (- -)(-) *
* () longitude B (- . =) *
* unit *
* d q cycle interval () () *
* () () minm depth () *
* q maxm depth () series category() *
* () floor depth () *
Thkhrkkhhkhkihhhkddhhdhddkhdhddkd ok kh ok sk ko sk gk dook ok o o s ook ok okt ok ok ok ok ok ok ek ok ok sk sk ok o
*parameter set () quality () *
* channels off () *
Khkkhhkhhkhhhhhhdhhdhhhhhhhdkokdkdk koo dood ko dok gk dok ook ok & ok 5 o vk o ok ok o o ok ok o ok ok ok ok ok ok ok ok ok ook ok
* _ *0p. (X)) *i/s Imt *
* start cycle () *code ()() * () () position*
* end cycle () $1C) () * () () time *
* *20) (D)) * () depth *

R R L R e L L L T Y T T F Ly L E L L T A Ay

*fixed stations *
*()<)()()()() () () () *
*data activities *
*() ())()() () ()(X¢) *
*projects *
*() ()() () () ()())() *
kk%*k%k*narrative/data documents Fdokkk
* n/d cat doc ref n/d cat doc ref n/d cat doc ref *
* 1 ())¢) 2 ())H() 3. X) *
* 4 ¢)CH() 5 ¢)() 6 ())() *
* 7 CHC)(C) 8 () H() 9 ())() *
* 10 €)()() 11 ¢))() 12 ¢))H() %
* 13 ¢) X) 14 ¢) X() 15 C) X() %
* 16 ¢)(C)() 17 ¢)C)() 18 ()()() *
* 19 ¢)(X() 20 ()C H() 21 () ¢) *
* 22 C)(C X)() 23 ())¢) 24 () H(C) *

Khkkdkkkdkhkhhhhhbhkdhbhhhhhhhhhrhhhhhrhhhbhhhhhhhhhkhhhhhhhrhrh kA AR AR A rhbhhhihi

CONVERSION 46 17 May 84

APPENDIX C

System Throughput Statistics

C.1) Transfer

The following table provides an analysis of the number of series Transferred for
each source format, to the end of January “84.

Format Series Format Series Format Series Format Series
" count count count count
001 25 031 061 3 091 67
002 40 032 062 092 1
003 2 033 063 093
004*%+ 250+18 034 064 094
005 035 75 065 095
006* 200 036 60 066 096
007* 890 037 4 067 097
008* 318 038 114 068 098
009 039 9 069 5 099
010 040 4 070 68 100
011 041 071 16 101
012 042 072 24 102
013 043 33 073 144 103
014 044 49 074 9 104
015 50 045 84 075 2 105
016 046 5 076 22 106
017 047 159 077 60 107
018 048 2 078 108
019 049 136 079 57 109
020 16 050 1 080 110
021* 84 051 1 081 114
022 3 052 61 082 26
023 4 053 1 083 27
024 054 9 084 8
025 055 20 085
026 056 086 11
027 057 8 087 8
028 058 6 088 16
029 059 3 089
030 060 3 090 59
Total nc. formats with series Transferred = 56
Total no. of series = 3504

Series in formats marked with an asterisk were Transferred using software
written prior to the development of the mature system (total = 1742 series). The
remainder have been written in the period March 82 to the end of Jan ’84.

The plus sign against 004 indicates that a separate version of the program was

coded under the new system. This was actually undertaken to allow the data to be
processed using multi-accession tapes, but it did also allow a comparison to be

CONVERSION 47 17 May 84

System Throughput Statistics

made between the modes of development. The 004 format is almost the simplest: in
one case it took about two days of adaptation and testing to produce the
necessary code; 1in the other, 1 hour to write the three modules and the CST
(channel specificatfon table). It should be noted though that the latter attempt
used the one distinctive routiune (requiring the use of tape to test) written
previously and rad two bugs - eliminated on the following day.

At the other extreme, formats of a general nature, such as 047 can still take a
long time. To write the program and process all the series took the same
individual about 5 weeks. The most time spent on a Transfer is approximately ten
weeks (006).

In the year extending to the end of January “84, some 18 Transfer programs were
written, and 720 series (5,503,550 datacycles) were Transferred (not exclusively
by the newly written programs) at the cost of approximately half a man-year. The
backlog of data, excluding hydrographic data, has been effectively eliminated.

C.2) Merge

Merge thoughput is governed largely by the screeners’ ability to screen data.
So far three Merge/Load tapes totalling 264, 880 and 881 series have been
prepared and some 1841 series have been banked (i.e 184 have had to be re-Merged
because of errors found subsequent to Merge) in a total of 53 separate
submissions.The series are related to 24 parameters sets in the subject areas of
currents, waves, tides and meteorology.

The first Merge dates to September 1981.

CONVERSION 48 17 May 84

APPENDIX D

Example of a Logical Mapping Document

The following is a document describing the Transfer processing for the 015
format (Wave Data). The Transfer may be described as of rather above average
difficulty. Note that the CST and common descriptions are directly sourced from
the files concerned through the use of a .so command in the Roff.

1) General

The general srecification for the Transfer program has been given in
MDBS/CONV/16. The considerations involved in defining a logical mapping have
been covered in MDBS/CONV/27. Notes for writing the program have been given in
MDBS/CONV/TRNS/4.

2) Processing Outline

There is no accession header. The processing of the first series is therefore no
different from the rest.

The header module (HDO15) processes the file header records, generating the
CSHOID, timing information and positional information. The instrument type and
derived wave height parameter are identified and appropriate dynamic sourcing
records generated. The complete header is copied asis to segment 8 of the "B"
file. Syntax and, where appropriate, consistency checks are included.

The datacycle module (CYO15) inputs and decodes a single datacycle. The time
channel 1is checked syntactically and for negative increments. If a gap of two
sampling intervals or more is encountered, a missing datacycle is assumed and a
null cycle is inserted. A check is maintained to trap any cycles inserted where
not required. The data flags are classified as absent, calm, user defined, or
replacement and MIAS flags set up accordingly. 1If the flags do not indicate a
problem, then the data are checked for internal consistency. Absent data values
are translated to MIAS standard values. A gap mask is maintained.

The trailer module (TLO15) reports cycle module errors and warnings, performs

simple checks on the transferred data, reports any discontinuities indicated by
the gap mask, and completes entries to the "B" file.

3) Channel Specification Table

~Nl ~1 Cycle# ~s1/0/ ~D,R,15,")"

~N2 ~I Cycle flag ~SB20,NP ~D,UBR,Al ~A#52

~N57 ~1 Cycle ~8Cl1,NP,20 ~3D,UB

~“N3 ~I Datacycle ~5C21,40 ~D,B

~N58 ~I Cycle ~SC61,NP,20 ~5D,UB

~“N4 ~1I Dur(s) ~SB5,NP ~B,1A,F6.1 ~A AZDR11(FML)F-1.0,F8.0
~D,,F6.1

~“N5 ~I Dur flag ~SB21,NP ~D,UB,Al ~A#4

~“N6 ~I S.Dep(m) ~SC,8 ~D,

~“N7 ~I S.Dep{(m) ~SB ~B,1A,F7.2 ~A ADEP11(FML)F-1.0,F8.2

~N8 ~1 S.Dep flag ~SB,NP ~D,UB,Al ~A#7

CONVERSION 49 17 May 84

N9 ~I S.Dep(m) ~SB,NP
“N1O ~I S.Dep flag ~SB,NP
~N12 ~I Tz(s) ~SB7 ,NP
~N13 ~I Tz flag ~SB23,NP
“N15 ~1I Te(s) ~SB8,NP
“N16 ~I Tc flag ~SB24,NP
“N17 ~I Hs(Unc ft) =~sSC,6
“N18 ~I Hs(Unc m) ~SC,6
“N19 ~I Hs (m) ~8C,6
“N20 ~I Hs (m) ~SB
~N21 ~I Hs flag ~SB,NP
“N22 =1 Hs (m) ~SB,NP
“N23 ~I Hs flag ~SB,NP
“N24 ~I HRMS(Unc ft)~sc,6
“N25 ~I HRMS(Unc m) ~SC,6
~N26 ~I HRMS*4(m) ~SC,6
“N27 I HRMS*4(m) ~SB
~N28 ~I HRMS flag ~SB,NP
~N29 ~I HRMS*4(m) ~SB,NP
“N30 ~I HRMS flag ~SB,NP
“N31 I A’ (m) ~SC,6
“N32 ~I A’ (m) ~SB
~N33 ~I A flag ~SB,NP
“N34 ~I "A’(m) ~SB,NP
~N35 ~I A flag ~SB,NP
“N36 ~I ‘B’ (m) ~SC,6
“N37 ~I ‘B’(m) ~SB
“N38 ~I B flag ~SB,NP
~N39 ~I ‘B’ (m) ~SB,NP
“N4O ~1 B flag ~SB,NP
“N4L I “C(m) ~SC,6
“N42 T ‘C’{m) ~SB
~N43 ~I C flag ~SB,NP
~N44 ~1 ’C’(m) ~SB,NP
~“N45 ~1 C flag ~SB,NP
“N46 ~1 ‘D’ (m) ~S8C,6
“N47 ~I ‘D’(m) ~SB
~N48 ~I D flag ~SB,NP
“N49 ~1I ‘D' (m) ~SB,NP
“N50 "I D flag ~SB,NP
~“N51 ~I Date ~SB1,NP
“N52 ~I Time ~SB2 ,NP
“N53 I Date(rnd) ~SB3,NP
“N54 ~I Time(rnd) ~SB4 NP
CONVERSION

~B,1A,F7.2
~D, ,F7.2
~D,UB,Al

~B,1A,F5.2
~D,,F5.2
~D,UB,Al
~B,1A,F5.2
~D, ,F5.2
~D,UB,Al

~D,
.

>
~B,1A,F5.2
~D,UB, Al
~B,1A,F5.2
~D, ,F5.2
~D,UB, Al
D

~D]

>
~B,1A,F5.2
~D,UB,Al
~B,1A,F5.2
~D,,F5.2
~D,UB,Al

~D,
~B,1A,F5.2
~D,UB,Al
~B,1A,F5.2
~D, ,F5.2
~D,UB,Al

-,
~B,1A,F5.2
~D,UB,Al
~B,1A,F5.2
~D, ,F5.2
~D,UB,Al

~p,
~B,1A,F5.2
~D,UB,Al
~B,1A,F5.2
~D, ,F5.2
~D,UB,Al

~p,
~B,1A,F5.2
~D,UB,Al
~B,1A,F5.2
~D,,F5.2
~D,UB,Al

50

Channel Specification Table

“A ADEP11(FML)F-1.0,F8.2
~A#9
~A GTZAl1(FTML)F-1.0,F8.2

~A#12
~A GTCAl1(FTML)F-1.0,F8.2

~A#15

~“A GTDH11(FTML)F-1.0,F8.2
~A#20
“A GTDHI1(FTML)F-1.0,F8.2

~A#22

“A GCAR11(FTML)F-1.0,F8.2
~A#27
“A GCAR11(FTML)F-1.0,F8.2

~Af#29
“A GMXLI1(FTML)F-1.0,F8.2
~A# 32
“A GMXL11(FTML)F-1.0,F8.2
~A#34
“A GTKCLI(FTML)F-1.0,F8.2
~A#37
“A GTKC11(FTML)F-1.0,F8.2
~A#39
~A GMNL11(FTML)F-1.0,F8.2
~A#42
“A GMNLI11(FTML)F-1.0,F8.2
~A#LS
“A GTKD11(FTML)F-1.0,F8.2
~A#47
“A GTKD11(FTML)F-1.0,F8.2
~A#49

~A AADY11()I-1,16
~A AAFDI11(F)F-1.0,F7.6

17 Mayv R4

Channel Specification Table

“N55 ~I Date ~S817(53)01/0,50,0,"(12,°"/"",211,""/"",211)"/
~p,

~“N56 ~I Time ~S18(54)01/0,7(211,77.7",211)"/
~D,

CONVERSION 51 17 May 84

"B" File Entries

4) "B" File Entries

4.1) Second Record Segment

The following segment 2 entries are provided by the source-specific software.

Al40 CSHOID

Al80 Confidentiality flag
A250 Start latitude

A260 Start longitude

A270 Start date

A280 Start time

A300 End date

A310 End time

A340 M Sampling interval units
A350 Sampling interval
A380 Minimum depth

A390 Maximum depth

A420 Water depth

The CSHOID is formed from the lst 12 non-blank characters held in columns 61-80
of the first header record.

B020 mmmmm First useful datacycle serial number
BO30 nnnnn Last useful datacycle serial number

‘mmmmm” is set to the first non-null datacycle and ‘nnnnn’ to the last non-null
cycle.

4.2) Fourth Record Segment

The site identifier, latitude, lougitude, sampling interval, start and end
date/time, data description codes are output in annotated format. If a Taunton
conversion (type 13) header record is encountered it is output to segment 4 as
an additional record.

4.3) Fifth Record Segment

The following entries are included in addition to those provided by the Transfer
System.

Date/time of the first non-null datacycle

Date/time of the last non-null datacycle

The number of cycles transferred (includes all null cycles)

The number of cycles between the first non-null cycle and the last

CONVERSION 52 17 May 84

"B" File Entries
4.4) Sixth Record Segment

Warning messages (tagged 06nn) are detailed in the software descriptions below.

4.5) Eighth Record Segment

The following entries are made;
<n> GAPS OF 24 HOURS OR LESS SPANNING A TOTAL OF <n> DAYS <n> HOURS
<n> MINUTES
<n> GAPS GREATER THAN 24 HOURS Followed by n entries of the form;
GAP FROM yyyy.mm.dd AT hh.mm TO yyyy.mm.dd AT hh.mm

Note that in all cases n may be zero. In addition, each header record is copied
asis.

5) Source-specific Common Block

0010C

0020C---- STRUCTURE OF COMMON CO1SIN

0030C

0040C---—— IAADYS I - START DAYNUMBER (FROM 1ST CYCLE)
0050C—--- AAFDS F - START DAY FRACTION

0060C---— IAADYE I - END DAYNUMBER (FROM HEADER)
0070C—--- AAFDE F - END DAY FRACTION

0080C---- IDPC I - DAYNUMBER OF PREVIOUS DATACYCLE
0090C—--— TIMPC F - DAY FRACTION OF PREVIOUS DATACYCLE
0100C---- CYCINT F - SAMPLING INTERVAL (DAYS)

0110C---- TOL F - SAMPLING INTERVAL TOLERANCE

0120C

0130C-—-- LGINTC I - INTERMEDIATE FILE LGU

0140C—=-- NZERO L - ARRAY OF CHANNEL MONITOR SWITCHES
0150C---- STUFF L - MISSING CYCLE INSERTION SWITCH
0160C-—-- USFLG L - USER-DEFINED FLAG SWITCH

0170C---- REPFLG L - SUBSTITUTE VALUE SWITCH

0180C---- DPTHL F - SENSOR DEPTH FOR PREVIOUS DATACYCLE
0190C---- SDV L - SENSOR DEPTH VARIATION SWITCH
0200C---- IFAIL I - CHANNEL MONITOR CHECK FAIL CODE
0210C-—-- FEET L - SET .T. IF DATA ARE IN FEET

0220C

0230C--—- SBWR L - SET .T. BY HDO15 FOR SBWR DATA
0240C---- WRDR L - SET .T. BY HDO15 FOR WAVERIDER DATA
0250C

0260C---— MSKGAP I - GAP MASK

0270C---— PGAP T — GAP MASK POINTER

0280C—=-- NBSET I - SET BIT COUNTER

0290C

0300C---- MSKERR I - ERROR MASK

0310C

0320 PARAMETER MSKSIZ=244

0330 INTEGER PGAP

0340 LOGICAL FEET,SBWR,WRDR,SDV,REPFLG,USFLG,STUFF,NZERO(7)
0350 DIMENSION MSKGAP(MSKSIZ)

0360 COMMON/CO15IN/ IAADYS,AAFDS,IAADYE,AAFDE,IDPC,TIMPC,CYCINT,TOL
0370 COMMON/CO15IN/ LGINTC,NZERO,STUFF,USFLG,REPFLG,DPTHL,SDV,IFAIL,
0380 & FEET

CONVERSION 53 17 May 84

Source-specific Common Block

0390 COMMON/CO15IN/ SBWR,WRDR
0400 COMMON/CO15IN/ MSKGAP ,PGAP ,NBSET
0410 COMMON/CO15IN/ MSKERR

6) Low-level Subroutine ABSO15

Processes a completely null datacycle.

ABS015 (BNARR,MSKGAP,PGAP,NBSET)

M M I M
where;
M BNARR F - Binary datacycle array
M MSKGAP I - Gap mask
M NBSET I - Gap mask set bit counter
I PGAP I - Gap mask pointer

The bit in the gap mask pointed to by PGAP is set on and the set bit counter
incremented. All flags are set ‘N’ by a call to SFLO1S5, and all data channels
set to -1.0.

7) Low-~level Subroutine CHKQO15

This routine performs units standardisation and checks the data parameters for
internal consistency.

CHKO15 (BNARR,HSU,HSC,NZERO,FEET,SBWR,WRDR,IFAIL)

M I I M I I I 0
where;
M BNARR F - Binary datacycle array
I FEET L - If set .T., input data are in feet.
I HSC I - Content of corrected Hs channel
I HSU I - Content of uncorrected Hs channel
0 IFAIL I - Check failure code (0 - OK;1 - corrected Hs channel

non-zero for non-SBWR data;n2 - negative value in
BNARR element n;3 - sample duration zero;n4 - unexpected
zero in binary array element n;5 - Hs(U) exceeds A+C:
6 - B exceeds A;7 - D exceeds C;8 - Tc exceeds Tz
10 - Hs(C)<=Hs(U) for SBWR data)

M NZERO L - Channel status switches - set .T. if the channel
contains at least 1 value >0.

1 SBWR L - If .T. series contains SBWR data

I WRDR L - If .T. series contains waverider data

The subroutine’s first task is to assign one of the 2 supplied Hs channels
(corrected and uncorrected) to the binary datacycle. The uncorrected channel is
used for non-SBWF data and the corrected for SBWR data.

If the input data are in feet, each of the wave height parameters is converted
to metres.

The non-time channels are checked for negative wvalues, or =zero values in a
channel which has previously contained non-zero data. Detection of a non-zero
value causes the appropriate channel status switch to be thrown. The
interrelationships between the input parameters are checked as defined by IFAIL
values 5-8 and 10.

CONVERSION 54 17 May 84

Low~-level subroutine CLMO15

8) Low-level subroutine CLMO15

This routine sets up data/flags appropriate for a calm record.

CLMO15 (BNARR)
M

where;
M BNARR F - Binary datacycle array
The wave height parameter flags are set to P’ and the wave period flags are set

to ‘Q’. All associated values are set to zero.

9) Low-level subroutine COMO1l5

This routine initialises the coomon area CO15IN.

COMO15 (LGINT,IAADY,AAFD,CYCM,DEPTH)
I I I I I

where;

AAFD F Start day fraction
CYCM F ~ Sampling interval in minutes

L I B e B B o |

DEPTH F - Sensor depth read from the first cycle
TAADY I - Start daynumber (taken from lst cycle)
LGINT I - Logical unit number for the intermediate file.

All data values are set either zero or to the value input through the argument
list except for the sampling interval tolerance (CYCM/10.0) and the date/time of
the previous cycle. The logical switches are all initialised to .F..

10) Low-level subroutine CSHO15

This routine forms the CSHOID from columns 61-80 of the first header record.

CSHO15 (LGINT,FILNAM,CSHOID)
I I 0

where;

O CSHOID 12 - Originator’s identifier

I FILNAM 20 - Columns 61-80 of lst header record

I LGINT I - Logical unit number of the intermediate file
The routine first checks the filename field for any binary zeros which are
converted to blanks. The length of the filename 1is inspected and if 12
characters or less is copied direct to the CSHOID. If it 1is 1longer than 12
characters, the 1st 12 non-blank characters are used and a warning issued.

O6HlFilename truncated for CSHOID

The CSHOID is then output to the intermediate file.

CONVERSION 55 17 May 84

Low-level subroutine DCKO15

11) Low-level subroutine DCKO15

This routine undertakes unit conversion and data checking for the sampling
interval and sensor depth channels.

DCKO15 (LGINT,BNARR,FEET,DPTHL,SBWR,WRDR,SDV,TAADY,AAFD,IFAIL)

I M I M I I M 1 I 0
where;
I AAFD F - Current cycle day fraction
M BNARR F - Binary datacycle array
M DPTHL F - Sensor depth for previous cycle
I FEET L - If set .T. the sensor depths are in feet
I TAADY T - Current cycle daynumber
0 IFAIL I - Check fail indicator (0 - OK;3 - sample duration zero;
9 - non-zero sensor depth for waverider)
I LGINT I - Logical unit number for the intermediate file
I SBWR L - If set .T. the data are from a SBWR
M SDV L - Set .T. if a variation is detected in SBWR sensor depth
I WRDR L - If set .T. the data are from a waverider

The sampling duration is converted from minutes to seconds and checked for a
non-zero value. The sensor depth is checked and a critical error signalled if a
non-zero value is encountered in waverider data. Changes in sensor depth for
SBWR data are reported using a call to BER0O02. Values in feet are converted to
metres.

12) Low-level subroutine DYNO15

This routine generates the dynamic sourcing records for the wave height
parameters.

DYNO15 (LGINT,FEET,SBWR,WRDR,HRMS,NOTOK)

I I I I I 0
where;
I FEET L - If set .T. the data are in feet
I HRMS L - If set .T. the derived wave parameter is HRMS*4
I LGINT I - Logical unit number of the intermediate file
O NOTOK L - If .T. if the input data are inconsistent
I SBWR L - If set .T. the data are from a SBWR
I WRDR L - If set .T. the data are from a waverider

The input logical switches are <checked for the invalid combination of
SBWR.AND.WRDR. The routine takes separate paths for data in feet and data in
metres, sourcing different channels in the CST as appropriate. In both
pathways, the channels are sourced according to the following table

SBWR Corrected channel to Hs. Sensor depth
sourced

SBWR.AND.HRMS Corrected channel to HRMS*4., Sensor depth
sourced

WRDR Uncorrected channel to Hs

WRDR.AND.HRMS Uncorrected channel to HRMS*4

.NOT.WRDR.AND. Uncorrected channel to Hs. Sensor depth

.NOT.SBWR. sourced

CONVERSION 56 17 May B84

Low-level subroutine DYNO15

.NOT.WRDR.AND. Uncorrected channel to HRMS*4, Sensor
.NOT.SBWR.AND. depth sourced
HRMS

In cases where the corrected channel is sourced, the wuncorrected channel is
sourced as a character channel (and hence appears on the '"D" file)

13) Low-level subroutine FLGO15

This routine identifies the user supplied flag and sets a string of logical
variables which determine the processing path of the cycle module.

FLGO15 (FLAG,ABSD,CALM,USER,REPL,CHECK)

1 0] 0 0 0 0
where;
O ABSD L - Set .T. to invoke absent data processing (ABS015)
0 CALM L - Set .T. to invoke calm record processing (CLM0O15)
O CHECK L - Set .T. to invoke checking procedures
I FLAG 4 - User supplied flag
O REPL L - Set .T. if data flagged as replacement
0 USER L - Set .T. if a user defined flag is detected

The flag is checked against the set C, ,F,I,M,S with the following result

ABSD CALM REPL

C F T F

F F F
F T v F
I T F F
M T F F
S F F T

If the input flag is unrecognised, USER is set .T.. CHECK is set .T. if both
ABSD and CALM are .F.

14) Low-level subroutine INSTI1S

This routine checks the instrument type and data reduction fields against the
subset of possibilities allowed for in the Transfer design and converts them to
a set of logical variables which control the header module processing.

INST15 (TYPE,SBWR,WRDR,HRMS , TERR)
I 0 0 0 0

where;

O HRMS L - Set .T. if HRMS*4 is the derived wave parameter.

O IERR I - Error code (0 - OK;1 - Illegal instrument type:2 - Illegal
Hs/HRMS derivation;3 - Uncorrected SBWR data;4 - Correction
applied to non-SBWR data;5 - Instrument type subgroup for
non-SBWR data;6 ~ Illegal SBWR subgroup code)

0O SBWR L - Set .T. for SBWR data

I TYPE 4 - Packed method codes

0O WRDR L - Se* .T. for waverider data

CONVERSION 57 17 May 84

Low—~]level subroutine INSTI1S

The instrument code (character 1) is checked against the character set S (SBWR
set .T.), W (WRDR set .T.) and F. The derived wave height field (character 2) is
checked and must be T or F. In the latter case HRMS is set .T.. The correction
field (character 3) 1is checked against Y (correction), N, M, and U (no
correction). A check 1is maintained to ensure that SBWR data are always
corrected and that non-SBWR data are uncorrected. The 4th character should by
definition be blank, but SBWR type (Mkl = E;Mk2 = F) may be identified here.

15) Low-level subroutine SFLOI15

This routine sets all the flag channels (elements 20-29) in the binary work
array to a given value.

SFLO15 (BNARR,FLAG)
M I

where;

M BNARR - Binary work array
I FLAG - Flag value to be inserted

The time channel is only flagged if the input flag is ’‘N’.

16) Module Specifications

16.1) Header Module (HDO15)

The first header record is read, output to segment 8 and its identifier checked.

4101 PREMATURE EOF
4102INCORRECT RECORD IDENTIFIER FIELD
4115<Record>

The confidentiality flag is checked. A value of “C” generates an Al80 record. No
action is taken if *lank but any other value is considered a critical error.

4103IMNCORRECT RECORD STRUCTURE
The filename in columns 61-80 is converted to a CSHOID by a call to CSHO15.
4104BLANK CSHOID GENERATED

The second record is input and the latitude and longitude fields processed by
LTLNDC. The unit definition field is checked to ascertain whether the data are
in feet (F) or metres (M).

06H2FErrur in latitude field
06H3Error in longitude field
4105UNITS INCORRECTLY DEFINED

The water depth is input and converted to metres if appropriate. The data
description codes are packed into a single word and processed by a call to
INST15. A call to DYNO15 generates the necessary dynamic sourcing records as
directed by the logical variables output from INSTIS.

CONVERSION 58 17 May 84

Module Specifications

Q06H4FError in water depth field
4106ROUTINE INST15 FAILED WITH ERROR <n>
4107DUPLICATE INSTRUMENT TYPE DEFINED

The start and end date/times are converted to standard form for comparison with
the datacycle time channel. Syntax errors are ignored and are reported as non-
critical header/datacycle mismatches.

The input file is read until the first datacycle is encountered, copying each
intervening record to segment 8 of the "B" file. 1If a record type ‘13’ is
encountered, its content is reported to segment 4. The time channel from the
first cycle is converted to standard form and checked against the value held in
the header.

06H5Time mismatch - header/lst cycle
4108UNABLE TO DECODE DATACYCLE
4109DATE/TIME SYNTAX ERROR

A second datacycle is input and the nominal sampling interval (rounded to a
multiple of 10 minutes) computed. In the case of non-waverider data cycles are
read until a non-zero sensor depth is encountered. The file is repositioned to
re-read the first datacycle. The common area CO15IN is initialised by a call to
COMO15 and an estimate of the number of datacycles (using start/end dates)
communicated to the Transfer System by a call to HOFINF (option 3).

16.2) Cycle module CYO15

A datacycle is read in, its identifier checked for "99° (end of data) or ‘317
(valid datacycle) and decoded using the format
(4X,12,1X,13,1X,212,1X,A1,1X,¥6.2,F8.2,8F6.2) to give year, day in year, hour,
minute, flag, and the wave parameters.

4201 ILLEGAL RECORD IDENTIFIER
4208UNABLE TO DECODE DATACYCLE
4210<Datacycle>

The time channel is converted to standard form with syntax checking and compared
with the value for the previous datacycle to ensure that it does not decrement.
The gap between the current cycle and the previous cycle is checked and 1if it
exceeds twice the nominal sampling interval then Transfer inserts a null
datacycle unless the gap is smaller than two nominal sampling intervals in which
case an error 1is triggered. The daynumber/day fraction are copied into the
binary array and a rounded time channel (to the nearest minute) generated by a
call to TIMER.

4202DATE/TIME SYNTAX ERROR
4203DECREMENTING TIME CHANNEL
4204SHORT SAMPLING INTERVAL

The flag is processed by a call to FLGO15 and the binary datacycle manipulation
is carried out by a series of subroutine calls as directed by the logical
variables set up by FLGO15. The gap map pointer is incremented maintaining a
check on the mask array bound.

4205GAP MASK OVERFLOW
4206PARAMETER CHECK FAIL
4207CHECK FAILURE CODE <n>

CONVERSION 59 17 May 84

Module Specifications

On end of data a read is issued to force EOF. Any data following the terminator
trigger a critical error. A warning is generated if EOF is located before a
terminator record is encountered.

4207DATA RECORDS FOLLOWING TERMINATOR
O06C1ECF before terminator record

17) Trailer module TLO15

The module reports any error messages or warnings generated by the cycle module.

06T1User—-defined flag encountered

06T2SBWR sensor depth variation

06T3Substitute values detected

06T4Missing records inserted by Transfer
4303ERROR-FLAGGING MASK INCORRECTLY FORMULATED

Gap analysis is undertaken by a call to GAPANL with the small gap threshold set
to 24 hours. If the time base in common is within 1 minute of midnight, the
value is rounded to midnight for the purposes of gap reporting.

4302GAPANL FAILED WITH ERROR <n>

The total number of datacycles and the range of sensor depths are reported to
the "B" file. Checks are made to ensure that Hs/HRMS has not been suppressed
and that the end time taken from the header matches the time channel from the
last datacycle.

4304JINPO™ FAILED WITH ERROR <n>
4305HS/HRMS*4 CHANNEL SUPPRESSED
4306SFNSOR DEPTH NOT SOURCED WHEN EXPECTED
06T5Time mismatch — header/last cycle

CONVERSION 60 17 May 84

APPENDIX E

Chronology of System Building

The following is a chronology of significant developments in the creation of the
Conversion system. To attempt a detailed assessment of man-effort is difficult
because individuals have to devote significant parts of their time to other
things -~ requests for example ~ but it is true to say that prior to 1979 one
person was working in the area of Conversion, and thereafter two.

1976 Nov 1 MIAS established

1977 Feb First introduction to externally supplied Current Meter Data
(007 format - MAFF Lowestoft)
Apr 1 Prototype Conversion and other systems available
for use (the delay in installation of the inhouse computer
meant no actual banking could take place)

Assessing ocean weathership data prior to banking

1978 May Draft PXF and "B" file standards prepared
June First Transfer (007) written for MAFF Lowestoft CMD
July 3 accessions of 007 data Transferred
Sep Second Transfer written (008 - DAFS Aberdeen CMD);
PXF document finalised

Oct 008 -~ 2 accessions of 008 data Transferred
Nov PRODFORM written (1°st version)
Dec 006 Transfer being written

"B" file document finalised

1979 Jan Start on design of Stack;

006 Transfer development continues

Feb 006 Transfer completed with the processing of 200 series;
Documentation of the (initial) Transfer system prepared

March Draft of PXF (Flag) Editor;
First design attempt to reduce the time taken to write
Transfer programs (based on the notion of a subroutine
suite - and never implemented)

June Stack design started

Sept SMED coding starts;
PXF Editor in operation

Oct Code Table Interface established
Nov Stack interface finalised
Dec Start of Stack interface coding

1980 Feb Initial Central Index established

March Start of Merge program coding
(takes a year to complete)

April Transfer 004 coded

May Transfer 021 coded;

June Load/Merge interface standards appear
including MLT file definition

Aug Microfiche facility added to PXF editor;
Stack Interface software completed

Oct Prototype SMED load program available

Dec Updated specification for PRODFORM to

CONVERSTON 61 17 May 84

1981

1982

1983

1984

Feb
March
May
June
July
Sept
Oct

Fedb
March
July

Sep

June
Sept

Feb
Apr

Chronology of System Building

incorporate inventory information on output

New PRODFORM available

Merge program completed

Central Index update software provided

SMED coding complete. Some tests outstanding
Design of Transfer system begins

First Merge and Load of data;

Coding of Transfer system begins 22'nd

Coding of Transfer system nearing completion

First Transfer programs written using new system
Transfer system enhancements to support processing
of extended datacycles and multi-accession tapes
16 accessions have now been Transferred using the
new system

Most of the effort is devoted to Transferring
data (21 Transfer programs) with the backlog
effectively eliminated by the end of the year
Minor enhancements of SMED system
Modifications to CST analysis to allow

for large CSTs

Draft of QXF document
Central Index reconstituted and new interface written

Reference to the development of screening software has been omitted in the
above; it is in any case small by comparison.

The reader’s attention is drawn to the very concentrated burst of development at
of ‘81 and the beginning of “82 in which approximately one quarter of
the entire Conversion system (this does not include the individual Transfers)
n; also to the subsequent low level of maintenance.

the end

was writte

CONVERSION

62 17 Mav 84

APPENDIX F

Software Analysis

The line counts of significant sections of code are set out below. The figures
in the main relate to February 1983: the exception is the Central Index software
which has undergone a major transformation more recently.

Area Line Comment No. of No. of Lines
Count Lines as 7% Routines per Routine

Transfer 24048 54.5 275 87
System
Transfer 5397 37.7 76 71
General
Code trans- 788 36.8 13 60
literation
Central 4406 53.9 48 91
Index
SMED 18559 44,6 239 77
PXF Editor 11977 52.5 163 73
"B" file 1997 36.2 14 142
processing
Non-SH 1216 45.0 11 110
processing
Stack 7659 70.7 122 62
Merge 9605 47.9 131 73

The sections given above may be considered to constitute the kernel of the
Conversion system and exclude, with the exception of the PXF editor which
happens to include a plotting program, any data screening software. In
addition, of course, very large quantities of code are produced on a routine
basis, to a similar standard, for the individual Transfer programs. The
corresponding figures for a total of 36 Transfers (which may be taken as
representative) is

32196 43.5 296 108
(895) (8.2)

with the average value displayed in brackets.

CONVERSION 63 18 May B4

APPENDIX G

Data Flow Diagram

The data flow diagram charts the principal processes involved in the Conversion
and banking of data. The symbols used can easily be inferred - rectangles and
squares, for example, are taken to denote processes and ovals represent files -
but a number of omissions - due largely to lack of space - require comment.

1) Printout is produced for all the batch processing programs but only
Transfer is dizgrammed to indicate this,

2) The PXF editor can be used tc produce microfiche.

3) The "A" files are ‘concentrated’ through appending to concentration tapes
(‘conc.”). A number of minor timesharing processes are involved in
preparing NSH files (Non-Series Header files) and at the bottom of the
diagram two small processes are 1indicated by the presence of ‘house
profiles’.

4) The Stack processor is shown as interfacing to a single inventory. This is
true 1insofar as the processing of any one series is concerned but, in
principle, the Stack processor can interface to a number of inventories.
Also the processor is shown as only being capable of spawning two types of
batch job: crossreference, deletion and other jobs are omitted.

5) The Central Index, like the Stacks, consists of a number of random files
linked through pointers.

CONVERSION 64 17 May 84

Data Flow Diagram

9 xpuaddy

ISvavivd

$

peoj T .meaa A avol SW3LSAS
HSN jusAul \\ 3SVEViva

NOISY3ANO?D

7 T
Tm_om_ﬁ_a_ ._Buum_m:& J91wesed
avol ! VIS HS ELLE S
AJQuuasse SN Lo
jund
N HOSSIO0Hd
AOVLS
1 q.

Alquuasse HS

A 4
4

Hnejap

ﬁ\\\iﬁ::,_:m

]

A

-poud

>

<4
4

+

H34SNVYYH 1

se)s

Y

wioj
XN) Plepdn pioyso
15 -sdi
e
PIOYSD - sdi

WHLSAS NOISHIANOD SVIW

17 May B4

65

CONVERSION

