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Foreword 
This report describes the one-dimensional laterally constrained inversion algorithm  
“LC1DINV” that we have developed for the interpretation of airborne electromagnetic data. 

The first part of the report introduces the problem and addresses the need for this work. The 
second part describes the mathematical development of the algorithm and its main 
characteristics. Finally, the third part shows examples of the application of this algorithm to 
synthetic data sets.  
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Summary 
BGS has recently developed jointly with GTK (Geological Survey of Finland) an advanced 
airborne geoscience capability and has commenced extended airborne surveying of Northern 
Ireland with other areas soon to follow. Large multi-frequency electromagnetic data sets 
comprise an important part of these surveys. In order to aid the interpretation of these data 
sets, we have developed “LC1DINV”, a laterally constrained one-dimensional inversion 
algorithm. 

LC1DINV inverts for the resistivities and thicknesses of a few (two or three) horizontal layers 
using a regularised conjugate gradient optimisation routine. The inverse problem is stabilised 
through the use of lateral constraints that ensure that model parameters change smoothly in 
the horizontal direction while preserving our ability to distinguish layer boundaries. Tests on 
synthetic models confirm the stability and efficiency of the method. 
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1 Introduction 
BGS has developed jointly with GTK (Geological Survey of Finland) an advanced airborne 
geoscience capability and has commenced extended airborne surveys in Northern Ireland and 
elsewhere. An important part of these surveys is the acquisition of large multi-frequency 
electromagnetic (EM) data sets in order to characterise the conductivity distribution of the 
subsurface. We therefore need a fast and reliable way to invert large airborne electromagnetic 
(AEM) data sets. This report describes the laterally constrained one-dimensional (1-D) inversion 
algorithm “LC1DINV” that we have developed for this purpose. 

2 Frequency-domain AEM inversion methods 
AEM surveys produce large data sets that require fast and stable inversion tools. Industry 
standard practice for interpretation of frequency-domain AEM data is to use half-space 
inversions, i.e. apparent resistivity transformations, that invert for the resistivity of a half-space 
and its depth below the receiver (Fraser, 1978; Fraser 1986, Huang and Fraser, 1996). These 
transformations are not only very fast but they are also very stable because one can always find a 
half-space resistivity that will fit the data. Moreover, errors in flight altitude do not affect the 
apparent resistivity estimation but are propagated into the apparent depth estimation. They can 
therefore produce a good representation of horizontal resistivity variations. However, they don’t 
allow detection of resistivity variations with depth and suffer in areas where the resistivity model 
departs significantly from that of a half-space.  

In order to distinguish vertical resistivity variations and obtain a formal measure of model 
validity one can use a multi-layer 1-D inversion (Beard, 2000; Beard and Nyquist, 1998; 
Constable et al., 1987; Ellis, 1998; Fitterman and Deszcz-Pan, 1998; Paterson and Redford, 
1986; Sengpiel and Siemon, 1998, 2000). These inversions are non-unique because they solve a 
heavily underdetermined problem. They therefore utilise additional constraints in order to 
stabilise the problem, such as the smoothness constraint that requires that vertical resistivity 
variations in the model be smooth. Inversions of this type manage to successfully fit the data but 
produce very smooth sections where formation boundaries are smeared and are difficult to 
distinguish.  

In areas where the geology departs from the 1-D assumption (isolated anomalies, dipping targets, 
etc.) three-dimensional (3-D) inversion may be necessary. Full non-linear 3-D EM inversion 
(e.g., Sasaki, 2001; Sasaki and Nakazato, 2003) is, however, very time-consuming and 
unsuitable for airborne surveys which produce very large data sets from multiple transmitter 
positions. Attempts to develop fast and practical 3-D inversion schemes based on approximations 
have recently been made and some of these algorithms have been applied to AEM data (Zhang, 
2003; Zhdanov and Tartaras, 2002), but these methods can be still applied only to limited areas 
of particular interest. 

3 LC1DINV algorithm development and description 
Given a starting model, m, that describes the (electrical) parameters of the subsurface, the main 
objective of an inversion algorithm is to gradually modify this model until the predicted data, dp, 
match the observed data, d, to a satisfactory degree. The predicted data are computed using a 
numerical modelling code that incorporates the appropriate physics of the problem. The 
difference between predicted and observed data is the data misfit. The starting model is gradually 
modified according to an optimization routine so as to reduce the data misfit. 
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We have constructed a 1-D inversion scheme, which means that the electrical parameters of the 
subsurface vary only in one direction, namely with depth. Thus our model consists of a series of 
horizontal layers and the model parameters comprise the resistivities and thicknesses of these 
layers. The number of layers is unlimited but when a two-frequency airborne system is used we 
only use two or three-layer models in the inversion, because we are unable to resolve more 
layers. We use the 1-D modelling code “BLOOPS”  (Sinha, 1977) to compute the predicted data. 

As stated, the goal of an inversion algorithm is to gradually reduce the misfit between predicted 
and observed data. The distance between the two data sets can be defined in a few different 
ways. We have used the L2 norm, ... , of the data differences, which is calculated as the square 
root of the sum of the squares of the differences between individual data points: 

( )∑ −=−
i

i
p

i
p dddd 2 . Ideally, we would like to match the observed data exactly. In 

practice, however, noise, incomplete data coverage and imperfect model parameterization limit 
our ability to do so. Therefore, we try instead to match the observed data to a desired level of 
accuracy, ε. As a result of the above limitations, the inverse problem is ill posed, i.e., unstable 
and non-unique. In order to find a stable solution we regularise the problem by imposing 
additional conditions that our model needs to satisfy (Tikhonov and Arsenin, 1977). There are 
several possible choices for these additional conditions with a widely used one being the 
smoothness constraint (Loke and Barker, 1996; Oldenburg and Li, 1994). The problem with this 
type of constraint is that it produces smooth models where it is difficult to distinguish boundaries 
between formations. We opt instead for a laterally constrained inversion (Auken et al., 2002; 
Auken and Christiansen, 2004; Christiansen and Auken, 2004; Smith et al., 1999; Wisen et al., 
2005). In this type of inversion we invert simultaneously for several observation points and we 
require that lateral changes in the model parameters from one observation point to the next are 
small. Thus, we retain the ability to distinguish different layers while we avoid the problem 
common to many 1-D inversion schemes of “noisy”-looking resulting models. Moreover, we 
may, if we have such information, require our model to be close to an apriori model, mapr. 

Mathematically the above requirements mean that instead of just trying to minimise the data 
misfit, we try to minimise the parametric functional ( ) ( ) ( ) )(mSrmSmmmP βαφ ++= , where α 
and β are regularisation parameters, φ is the misfit functional and Sm and Sr are stabilising 
functionals: 

( ) 2
ddWm pd −=φ , 

aprm mmWmSm −=)( , 

RmWmSr m=)( . 

Wd and Wm are data and model weighting matrices respectively, and R is the “roughening” matrix 
that implements the lateral constraints. The next two subsections describe in detail the 
implementation of the lateral constraints and the optimisation routine used to minimise the 
parametric functional. 

3.1 LATERAL CONSTRAINTS IMPLEMENTATION 

The lateral constraints are implemented through the use of a roughening matrix, R, that is applied 
to the vector of model parameters, m. The roughening matrix contains 1 and –1’s for the 
constrained parameters and 0 at all other places. For example the first row of the roughening 
matrix has 1 in the first column that corresponds to the first parameter, i.e., the resistivity of the 
first layer, for observation point #1 and –1 at the column that corresponds to the same parameter 
but for observation point #2. The same is true for the columns that correspond to the other 
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parameters (thickness of the first layer, resistivity of the second layer and so forth). The second 
row has 1 and –1 for the same parameters but for observation points #2 and #3. Thus matrix R 
has a banded form:  

⎥
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⎥
⎥

⎦
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⎢
⎢
⎢
⎢

⎣
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−

−
−

=

10010000
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The effect of the roughening matrix is that it penalises large differences between parameters of 
adjacent points. 

3.2 REGULARISED CONJUGATE GRADIENT MINIMISATION ROUTINE 
In order to find the minimum of the parametric functional we use the conjugate gradient (CG) 
method (Hestenes and Stiefel, 1952). This is a local minimisation method that belongs to the 
large family of gradient-type methods. The main idea of this method is based on the (simpler) 
steepest descent method which always finds the direction that locally minimises the functional in 
question. However, that method converges slowly because the search directions are not 
sufficiently different from each other. Therefore, in the CG method, every new search direction 
is taken to be a linear combination of the current steepest descent direction and the previous 
search directions in order to obtain a search direction that is conjugate to the previous ones. The 
basic CG algorithm can be described as follows (Golub and Van Loan, 1996): 
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The CG method as described above was originally developed for the solution of linear systems. 
Here we use this method for the solution of a non-linear inverse problem. In this case at each 
iteration we need to compute the Jacobian (or sensitivity) matrix, 

( ) ( ) ( )
m

mAmmA
m
mAF

δ
δ −+

=
∂

∂
= ,  

where A is the forward modelling operator. The elements of the Jacobian matrix are calculated as 
the change observed in the data point di for a small change in the model parameter mj: 
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i
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= . 
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Then, the CG algorithm can be described as follows (Zhdanov, 2002): 
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where ln is the steepest descent direction and gn is the conjugate direction at the nth iteration. 

However, the non-linear problem we are trying to solve is ill posed and we have regularised it by 
adding additional constraints, namely the lateral constraints and the apriori information. We thus 
want to minimise the parametric functional, i.e. we require that 
( ) ( ) ( ) min)( ≡++= mSrmSmmmP βαφ . To solve this problem we take the first derivative of the 

parametric functional with respect to the model, m, and set it to zero. Using differential calculus 
we derive the final form of the regularised CG method:  
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3.2.1 Discretised (matrix) form  
The vectors and matrices of the inverse problem we are solving have the following dimensions: 

    d = Nd-by-1 (data vector) 

    m = Nm-by-1 (model parameter vector) 

    Wd = Nd-by-Nd (data weighting matrix) 

    Wm = Nm-by-Nm (model weighting matrix) 

    WR = Nc-by-Nc (lateral-constraint weighting matrix) 

    F = Nd-by-Nm (Jacobian matrix) 

    R = Nc-by-Nm (roughening matrix), 

where Nd=2*Nf*Nobs is the total number of measurements (data), Nf is the number of 
frequencies in use, Nobs is the number of observation points, Nm=Npar*Nobs is the total 
number of model parameters, Npar=2*Nl-1 is the number of model parameters per observation 
point, Nl is the number of layers comprising the model, Nc = Npar*(Σ(1:Nlatc)+Nlatc*(Nobs-
Nlatc-1)) is the total number of lateral constraints, Nlatc is the number of lateral constraints 
either side of each observation point, and 1:Nlatc is the vector with elements the sequence of 
numbers from 1 to Nlatc. 

 

Thus, the CG routine in discretised (matrix) form looks as follows: 
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4 Application of LC1DINV on synthetic AEM data sets 
In order to test and demonstrate the effectiveness of our algorithm we inverted synthetic data sets 
computed for 1-D and 3-D models. We used the numerical modelling package “EMIGMA”, 
distributed by PetRos EiKon Inc., for these calculations. EMIGMA computes the 3-D responses 
using algorithms based on the localized non-linear (LN) approximation of the integral equation 
for the electric field (Habashy et al., 1993; Murray, 1997; Murray et al., 1999). The data sets 
comprise four components: real (in-phase) and imaginary (quadrature) for each of two 
frequencies. The two frequencies used here are 3 and 14 kHz, being those of the current AEM 
system. 

4.1 1-D MODELS 

We first need to test whether LC1DINV can successfully recover a 1-D conductivity distribution 
and how the use of lateral constraints affects/improves the inversion results. Therefore, we 
simulated an AEM survey over a simple two-layer earth and inverted the synthetic data with and 
without the use of lateral constraints. The simulated airborne system is the one used by BGS: two 
pairs of vertical coplanar coils operating at 3 and 14 kHz with a transmitter-receiver separation 
of 21.36m.  Measurements were simulated every 10 m along the flight path. 

Figure 1 shows the simulated model which comprises a 40m-thick surface layer with 
conductivity 10 mS/m and a lower half-space with conductivity 50 mS/m. Figure 2 shows the 
result of the inversion without the use of lateral constraints. In this case no noise was added to 
the data and it is obvious that the recovered conductivity distribution matches closely the true 
one. Actually the only difference between the recovered and true conductivity distributions is 
that the bottom layer is shown to be a little more conductive and a little deeper than that of the 
synthetic model. This difference is simply due to the parameter equivalence inherent in the EM 
inverse problem. 

 

Figure 1. Simulated model of a conductive half-space below a resistive top layer. 
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Figure 2. LC1DINV inversion result without lateral constraints and with no added noise. 

 

However, when we add 5% noise and re-invert the data, the resulting conductivity cross-section 
(shown in Figure 3) is very “noisy”. This is actually a typical characteristic of 1-D inversions due 
to noise and other problems in survey data (e.g., small errors in the altitude estimation). The use 
of lateral constraints significantly helps to alleviate this problem, as is evident in the inversion 
result of Figure 4. Here we inverted the same noisy data but this time we applied the lateral 
constraints in the LC1DINV algorithm, using Nlatc=1, i.e. one lateral constraint on either side of 
each observation point. The “noisy” look has disappeared, the conductivity cross-section shows a 
remarkable continuity in the horizontal direction and it still closely matches the true conductivity 
distribution. 
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Figure 3. LC1DINV inversion result without lateral constraints and with 5% added noise. 

 

Figure 4. LC1DINV inversion result with lateral constraints and with 5% added noise. 
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4.2 3-D MODELS 
In reality, however, the subsurface conductivity distribution rarely conforms to a 1-D model. 
Often there exist 3-D anomalies that can either be targets or sources of noise, depending on the 
survey objectives. Here we have simulated a 3-D model based on the 1-D model of the previous 
section and the addition of a conductive surface body. The conductivity of the 3D body is 50 
mS/m, its thickness is 10 m and its horizontal extent is 100 m in both directions. We have 
simulated several flight lines across the body with a measurement interval of 10 m along the 
flight path and a flight line separation of 50 m. Figure 5 shows a cross-section across the centre 
of the simulated model. The model outside the area of the conductive surface body is the 1-D 
model of Figure 1. 5% random noise was added to all the data before inversion and the lateral 
constraints (with Nlatc=1) were applied to regularise the problem. Figure 6 shows the inversion 
results, using a two-layer model, for four flight lines passing over the centre of, over the edge of, 
100 metres away and 200 metres away from the 3-D surface target, respectively. We can see that 
outside the anomaly, the inversion algorithm quite successfully recovers the correct conductivity 
distribution. Over the conductive body, however, the two-layer model is unable to correctly 
represent the conductivity distribution. A slight increase in conductivity is observed at the centre 
of the profile without however reaching the true value of 50 mS/m. 

 

Figure 5. Simulated 3-D model of a conductive surface target in two-layer earth. 
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Figure 6. LC1DINV inversion results for four flight lines, using a two-layer model. 

 

Figure 7 shows the inversion results for the same flight lines but this time using a three-layer 
model. We can see that this time the conductive body is identified more clearly, although its 
conductivity is still underestimated. Outside the extent of the anomaly, the use of a three-layer 
model results in a slight overestimation of the conductivity between depths of 20 and 40 metres. 
Actually, a three-layer model corresponds to five model parameters and since our data only have 
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four components, this is an underdetermined problem. It is thus evident that a two-layer model is 
satisfactory and even preferable in most cases and a three-layer model is useful for inverting data 
over certain areas where the presence of a surface anomaly or a more complicated geology has 
been identified. 

 

Figure 7. LC1DINV inversion results for four flight lines, using a three-layer model. 
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5 Conclusions 
The application of LC1DINV to synthetic AEM data sets has shown that it is a stable algorithm 
that successfully recovers the subsurface distribution of conductivity and produces cross-sections 
that do not suffer from the “noisy” look common to multi-layer 1-D inversions. Moreover, it 
produces laterally smooth sections, while preserving the ability to distinguish distinct horizontal 
layers and formation boundaries. It is therefore a very useful tool for a more advanced 
interpretation of large airborne EM data sets, beyond the common deliverable of half-space 
apparent resistivity.  
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