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[1] Accurate computation of ice-stream location and
dynamics is a key aspiration for theoretical glaciology.
Ice-sheet models with thermo-viscous coupling have been
shown to exhibit stream-like instabilities using shallow-ice
approximation mechanics, but the location and width of
these streams depends on the numerical implementation and
are not unique. We present results from thermo-viscously
coupled ice-sheet models incorporating membrane stresses.
Spontaneous generation of fast-flowing linear features still
occurs under certain parameter regimes, with computed
stream widths between 20 km to 100 km, comparable with
observations. These features are maintained as the grid-size
is decreased. The thermo-viscous feedback mechanism that
generates ice-streams under the shallow ice approximation
still operates, now selecting a unique stream size.
Computations of thermo-viscous ice flows should include
membrane stresses when the bed is approximately flat, e.g.
parts of Antarctica and former ice-sheets of the Northern
hemisphere. Previous calculations of spontaneous ice-stream
generation using the shallow ice approximation should be
reassessed. Citation: Hindmarsh, R. C. A. (2009), Consistent

generation of ice-streams via thermo-viscous instabilities

modulated by membrane stresses, Geophys. Res. Lett., 36,

L06502, doi:10.1029/2008GL036877.

1. Introduction

[2] Ice streams are a conspicuous patterning in ice-sheets,
both in the surface topography and the surface velocity
[Bamber et al., 2001]. Their significance is due to their
discharging a very substantial proportion of the accumula-
tion of an ice-sheet, and exhibiting flow variability that
possibly extends in scale up to the very large surges that
played major roles in operation of the climate system (e.g.,
Heinrich Events [MacAyeal, 1993]). Consequently, the
successful computation of ice-stream location and flow is
one of the key goals of theoretical glaciology. However,
even computing ice-stream location has been problematical
up to now, with different models under the same forcing
predicting different stream geometries [Payne et al., 2000].
We consider the use of a more complex mechanical model,
and demonstrate that this step allows consistent prediction
of ice stream location.
[3] While many ice-streams are clearly associated with

topographic lows in the bedrock (e.g., Pine Island Glacier
[Vaughan et al., 2006]), evidence from former ice-sheets, in

particular the existence of cross-cutting lineations [Clark,
1993] shows that basal topography is not the only control
on ice-stream location. The existence of thermo-viscous
instabilities [e.g., Payne, 1995] in plane flow and related
‘‘hydraulic runaway’’ mechanisms [e.g., Sayag and Tziperman,
2008] has led to the suggestion and numerical demonstra-
tion that ice-streams might be generated by a map-plane
fingering instability caused by coupling of the ice flow and
the thermal field [Fowler and Johnson, 1996; Payne and
Dongelmans, 1997]. Using the shallow-ice approximation
(SIA), the latter authors presented calculations generated by
a time-dependent numerical model that solved the flow and
heat equations with a temperature-dependent ice viscosity,
showing that certain parameter combinations (principally
surface temperature and accumulation rate) generated ice-
stream-like features. They argued that a fingering mecha-
nism operated such that if a warmer area propagated
upstream locally, it would draw flow in which generated
localized heating, leading to less viscous ice, increased
speeds, drawdown and further channelling of ice - an ice-
flux capture mechanism. However, an intercomparison
experiment between models from ten different groups
[Payne et al., 2000] although exhibiting instabilities, failed
to generate comparable patterning, with considerable vari-
ation in detail shown in particular at short wavelengths. This
raised the issue of whether the computed stream generation
was a numerical artefact.
[4] In an effort to answer this question, Hindmarsh

[2004] examined the linearized instability of the shallow
ice approximation (SIA) in thermo-viscous calculations, and
showed that its use was ill-posed at short wavelengths.
Hindmarsh [2006a] showed that using mechanical models
which incorporated horizontal stress gradients damped
instabilities at short wavelengths, removing the ill-posing.
He also showed that use of the membrane stress approxi-
mation (MSA) (i.e., the three-dimensional version of the
longitudinal stress approximation, which includes horizontal
stress gradients) [Blatter, 1995;MacAyeal, 1989;Hindmarsh,
2006b] was as accurate as use of the full Stokes equations
for this application. Sayag and Tziperman [2008] found
similar results using a related but different mechanism for
generating instabilities. Previous workers [e.g., Hulbe and
MacAyeal, 1999; Marshall and Clarke, 1997] have used
membrane-stress approximations in thermo-mechanically
coupled calculations, but not to address the issue of spon-
taneous ice-stream genesis.
[5] Using the SIA, Hindmarsh [2006a] presented some

finite-amplitude (i.e., fully non-linear) calculations which
showed that the patterning of basal temperature depended
strongly on the discretization method used, arguing that
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this was a symptom of the ill-posedness of the SIA. Bueler
et al. [2007] have argued against this, suggesting that the
problem lay in flaws in the construction of the numerical
schemes. Some support for this idea comes from the
work of Saito et al. [2006], who found that the use of
higher-order stress models did not improve calculations of
streams.
[6] Solving a well-posed system is essential to the success

of numerical methods, so if we are to accept the reasoning of
Hindmarsh [2006a], the implication is that incorporating
horizontal stress gradients in thermo-mechanically coupled
computations of ice-sheet evolution should produce results
which, in the broad patterning at least, are independent of
the grid-size and discretization method used. This paper
examines this issue, adopting the simplest possible MSA
due toMacAyeal [1989]. A set of parameters which generate
steady streams using the SIA are used, and results are shown
to depend on the grid-size used under conditions of grid
refinement. The same set of parameters are then used to
generate instabilities with the MSA, and here the results do
not depend substantially on the grid used; moreover, the
streams are realistically sized.

2. Mathematical Preliminaries

[7] We consider an ice mass in plug flow on a flat bed,
where the horizontal velocity is vertically uniform for a
given horizontal position. This can represent an ice-stream
or a flow where the shear occurs in a very thin layer near the
bed [Fowler, 1992]. The relation between the horizontal
velocity and the basal shear stress can be represented by a
sliding law. Membrane stresses and corresponding strain-
rates are related by a non-linear viscous law, and horizontal
force balance is represented by the commonly used equa-
tions due to MacAyeal [1989], or, for comparison, by the
shallow ice approximation. Temperature is computed by
solving a time-dependent advection-diffusion equation; the
assumption of plug flow allows us to place all the dissipa-
tive heating, crucial to triggering instabilities, at the base of
the ice. When the shallow ice approximation is used, an
alternative horizontal motion constitutive equation, which
represents internal deformation, is also used to test the
influence of the initializing the ice-sheet. The numerical
implementation is outlined in Appendix A. A square grid is
used, and the parameters affecting the numerical solutions
are the grid size Dx = Dy, the vertical discretization Dz and
the time-step size Dt.
[8] Under the MSA, the governing equations for such an

ice-mass are [MacAyeal, 1989]
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where t is the deviatoric stress tensor, H is the thickness of
ice, (x, y) are horizontal position, ri, rw are the densities of
ice and water respectively and g the acceleration due to

gravity. The vector Tt = (Ttx, Tty) is the basal tangential
traction. Boundary conditions are zero tangential stress on
the vertical planes defining the boundary, and a normal
deviatoric stress tnn

tnn ¼ gH=4; ð2Þ

on these planes, where g � (1�ri/rw) rig, which is
numerically equivalent to the force across a grounding line
where no shelf is present. The surface elevation can evolve
at the margin. These boundary conditions avoids difficulties
associated with a moving grounding line, and numerical
experiments showed that the exact boundary condition did
not affect the results or conclusions of this paper, which
depend upon processes occurring well upstream of the
grounding-line. Where symmetry boundary conditions are
prescribed this normal boundary condition is replaced by one
setting the normal velocity to zero; the tangential condition
is unchanged.
[9] The strain-rate tensor e is related to the stress tensor

t by the viscous relationship e = AtI
n�1t, where A is the

temperature-dependent rate factor, tI = 1
2
trace (t � t) is the

second invariant of the stress tensor and n is the Glen
index. The evolution of thickness is given by @tH + r �
(Hu) = a, where t is time, u is the horizontal velocity
vector, a is the surface accumulation rate and we assume
negligible basal melting. Since the ice flows out of the
boundary at all points, we allow ice thickness to vary freely
at the margin under the membrane stress approximation.
[10] Since we assume that forward motion takes place

at or near the bed, we represent this by a constitutive
relationship for the tangential traction vector Tt and the
velocity u

Tt ¼ C uj j
1
‘�1

u; ð3Þ

where ‘ is the index in a Weertman-type sliding law. We
also carried out experiments with the shallow ice approxi-
mation, in which the membrane mechanical equation (1) is
replaced by �Tt = rigHrH, i.e., the membrane terms are
removed. This equation is now used with the constitutive
relationship equation (3) to compute ice flow. In order to
examine the effects of initial conditions on shallow ice
solutions, in some experiments the constitutive relationship
equation (3) is replaced by one which represents internal
deformation occurring according to the shallow ice approx-
imation as follows

Tt ¼
nþ 2

2AH

� �1
n

uj j
1
n
�1
u; ð4Þ

where u is the column-mean velocity, which gives the same
results for isothermal case (A uniform) as the EISMINT I
tests [Huybrechts et al., 1996].
[11] Plug flow asymptotics [Fowler, 1992] justify

mapping any heating in a basal shear layer onto a sliding
heating term, and it is this term which drives the instability.
This is the only dissipative term in the thermal equations,
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which are written and solved in a z-coordinate system, where
z = z/H, i.e.,
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¼ Gþ Tt � u; ð7Þ

where q is the temperature, k is the thermal conductivity of
ice, cs is the specific heat capacity of ice, q

s is the prescribed
surface temperature, G is the geothermal heat flux and Tt

is the basal tangential traction. The vertical advection term
is the z-coordinate expression of continuity based on the
divergence of horizontal velocity [Hindmarsh, 1999].
Internal heating e � t is negligible because the flow is still
shallow, and in any case such heating mostly occurs near the
upper surface, because the ice is colder and stiffer there.

3. Numerical Experiments

3.1. Flow Domain and Specifications

[12] Similarly to the EISMINT [Huybrechts et al., 1996]
experiments, the flow domain is a square of sides 1500 km,
and exploited symmetry, being solved on a quarter domain
with sides of 750 km. The accumulation rate is uniformly
0.3 m.a�1, and the indices n = 3, ‘ = 3. The dependence of
the rate factor on temperature was modelled by A = A0R(q).

[13] Here R(q) incorporates a dual-Arhenius relationship

R qð Þ ¼ c1 exp � E1

Gcq2

� �
þ c2 exp � E2

Gcq2

� �
ð8Þ

proposed by Hindmarsh and Le Meur [2001], where A0 =
10�16 a�1.Pa�3, (c1, c2) = (3.7
 106, 5.4
 1026), (E1, E2) =
(60, 140) kJ.mol�1 and Gc is the universal gas constant. By
construction, R is 1 at the melting point of ice. The sliding
coefficient C also has a temperature-dependence to simulate
the dependence of shear on the temperature C = C0/R(q)
with C0 = 4.47 
 10�5.Pa.(m.a�1)1/3. This value was chosen
to produce a maximum elevation under isothermal condi-
tions R � 1 very similar to that given by the EISMINT I
benchmark [Huybrechts et al., 1996]. Also, ri = 910 kg.m�3,
g = 9.81 m.s�2, k = 2 W.m.K�1, c = 2008 J.kg�1 have been
used. The geothermal heat flux was set to 0.0438 W.m�2,
and surface temperature qs = �20 + 0.01HC.

3.2. Shallow Ice Experiments

[14] Two initialization techniques were used. In the first
one (‘‘Standard initialization’’) the model was run in three
stages: (i) the steady geometry was computed for an
isothermal ice-sheet with R � 1 using equation (4); (ii) the
thermal field for this geometry, but with no thermo-viscous
coupling was computed; (iii) the model was allowed to
evolve with thermo-viscous coupling. Finally, (iv), the con-
stitutive relationship equation (3) was used in place of
equation (4), and the model run to steady state in thermo-
viscously coupled mode. The second initialization (‘‘Alter-
native initialization’’) technique consisted of the first three
steps of the above, but using equation (3) throughout. These
routes produced different results for the same grid size; the

Figure 1. Steady basal temperature in �C using the shallow ice approximation, (a) 50 km; (b) 25 km; (c) 12.5 km grids,
standard initialization (Figures 1a–1c); (d), 25 km grid, alternative initialization. x-coordinate horizontal on page. Note the
dependence on grid size and initialization. The shallow ice approximation has been used in most thermoviscous
calculations hitherto but gives multiple solutions.
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motivation for using the first, less intuitive route, is that it
produced for one grid size stream patterns similar to those
computed with membrane stresses. Computed steady basal
temperatures for different grid sizes are shown in Figure 1.
As in previous calculations [Payne and Dongelmans, 1997;
Payne et al., 2000] the uniform forcing results in a pattern-

ing of basal temperatures with warm parts corresponding
to streams, arising from the ice-flux capture mechanism
described by Payne and Dongelmans [1997]. However, the
results show a clear dependence of stream geometry on grid
size (Figures 1a–1c) and on initial conditions (Figure 1d).

Figure 2. Steady basal temperature in �C with membrane stresses, (a) 50 km; (b) 25 km; (c) 12.5 km; (d) 5 km grids.
Inclusion of membrane stresses generates a unique solution.

Figure 3. Steady temperatures and geometry with membrane stresses for 2.5 km grid, MSA, (a) thickness/elevation (m);
(b) speed; (c) basal temperature (�C); (d) cross-section showing temperatures at indicated y-position.
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3.3. Membrane Stresses

[15] Here we used the ‘‘Alternative Initialization’’, except
that membrane stresses were incorporated for all three
stages. Computed steady basal temperatures for different
grid sizes are shown in Figure 2. Again, uniform forcing
results in a patterning of basal temperatures, but the results
now show consistent stream geometry with grid size apart
from the very coarsest grid, with the transition between the
warmer-based and colder-based flows sharpening as grid
size is decreased. Figure 3 shows the finest resolution
calculations (grid size 2.5 km) of basal temperature, surface
elevation, speed and internal temperature. Figure 2d (5 km
grid) shows some transverse patterning within the streams;
this is not apparent in for the 2.5 km grid (Figure 3), and it is
a consequence of the longer time-step used (125a); short-
ening the time-step for the 5 km grid to 50a removed these
patterns. A further result, consistent with Payne and
Dongelmans [1997], is that a plane flow (i.e., symmetry
boundary condition on three sides) did not spontaneously
produce streaming flow. Other experiments run byPayne and
Dongelmans [1997] which investigated the effect of weak
symmetry breaking, were not re-run.

4. Discussion

[16] These results show that on flat beds it is important to
include horizontal stress gradients in the governing equations
to produce consistent computations of stream geometry. The
streams are between a few tens of kilometres to a hundred
kilometres in width for these experiments, consistent with
observed ice-streams, although a more exhaustive parameter
study would be required to determine the general validity of
this observation.
[17] As described above, Payne and Dongelmans [1997]

proposed an ice-flux capture mechanism based on the way
the SIA directs ice flow. Is this proposal still valid, given
that the MSA is seen to be an essential component of robust
prediction? Since one of the SIA calculations (Figure 1b)
produces stream geometry comparable with the consistent
calculations produced with the MSA (Figures 2 and 3), it
seems that there is an initial case that this mechanism does
operate; as Hindmarsh [2006a] argued, using the MSA
stops shorter wavelength features being selected.
[18] Hindmarsh [2006b] estimated the membrane cou-

pling length L (actually for the grounding line transition
zone, but the same analysis applies here) to be given by L =�
2

A�1uð Þ
1
n

rge

� n

nþ1
, where e is a mean slope. For cold ice an

upper surface value for A is 10�19 � 10�18Pa�3.a�1, and for
the computed ice-sheets e � 0.005. With a velocity of
100 m.a�1, the membrane coupling length is between 10 and
15 km. The computed ice-streams are therefore significantly
wider than the membrane coupling length, which is further
support that the ice-flux capture mechanism is qualitatively
correct.
[19] It may emerge that in areas where the flow is chan-

nelled by basal topography, incorporation of membrane
stresses is not necessary to produce reliable computation of
stream location. Further work should investigate this issue,
looking particularly at whether certain wavelengths in basal
topography are more able to control stream location. Other
issues include the investigation of how weak symmetry

breaking can be before streams stop spontaneously appearing,
as well as the generation of surges within the streams. More
generally, since one does not know a priori where streams
will appear, the simplest course would appear to be to solve
for membrane stresses everywhere, as has been the procedure
in this paper.

Appendix A: Numerical Implementation

[20] The momentum balance equations are solved using a
conservative finite difference method on a staggered grid.
Ice thicknesses are defined on the nodes, and x- and y-
direction velocities on the same staggered grids as used in
the shallow ice approximation [e.g., Hindmarsh and Payne,
1996], which are also the locations of the solution points for
the x- and y-momentum balance equations. Normal stresses
txx, tyy are defined on the nodes, while shear stress txy is
defined on the grid centres. The continuity equation is
solved on the thickness points. The equations are solved
semi-implicitly with a super-implicit weighting of w = 3;
this guarantees numerical stability for the membrane stress
case as well as the SIA case [Hindmarsh, 2001].
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