nerc.ac.uk

Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging

Ferraccioli, F.; Armadillo, E.; Zunino, A.; Bozzo, E.; Rocchi, S.; Armienti, P.. 2009 Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging. Tectonophysics, 478 (1-2). 43-61. 10.1016/j.tecto.2008.11.028

Full text not available from this repository.

Abstract/Summary

New aeromagnetic data image the extent and spatial distribution of Cenozoic magmatism and older basement features over the Admiralty Block of the Transantarctic Mountains. Digital enhancement techniques image magmatic and tectonic features spanning in age front the Cambrian to the Neogene. Magnetic lineaments trace major fault zones, including NNW to NNE trending transtensional fault systems that appear to control the emplacement of Neogene age McMurdo volcanics. These faults represent splays front a major NW-SE oriented Cenozoic strike-slip fault belt, which reactivated the inherited early Paleozoic structural architecture. NE-SW oriented magnetic lineaments are also typical of the Admiralty Block and reflect post-Miocene age extensional faults. To re-investigate controversial relationships between strike-slip faulting, rifting, and Cenozoic magmatism, we combined the new aeromagnetic data with previous datasets over the Transantarctic Mountains and Ross Sea Rift. Two key observations can be made from Our aeromagnetic compilation: I) Cenozoic alkaline intrusions along the margin of the Ross Sea Rift lie oblique to the NW-SE strike-slip faults and are not significantly displaced by them; 2) the Southern Cross and the Admiralty Blocks are Much more significantly affected by Cenozoic magmatism compared to the adjacent tectonic blocks, thereby indicating major tectono-magmatic segmentation of the Transantarctic Mountains rift flank. We put forward three alternative tectonic models to explain the puzzling observation that major Cenozoic alkaline intrusions emplaced along the Ross Sea Rift margin show no evidence for major strike-slip displacement. Our first model predicts that the alkaline intrusions were emplaced along left-lateral cross-faults, which accommodated distributed right-lateral shearing. In contrast, our second model does not require major distributed strike-slip shearing, and relates the emplacement of Cenozoic alkaline intrusions to sea-floor spreading in the Adare Basin, Coupled with intracontinental transfer faulting. The third model is all attempt to reconcile the two opposing hypothesis and relies oil a recent inference, which postulates that opening of the Adare Basin relates to fault splaying front the Balleny strike-slip fault zone. A low seismic velocity anomaly in the upper mantle appears to extend from the Ross Sea Rift Under the Admiralty and Southern Cross Blocks of the Transantarctic Mountains. Lateral flow of [lot upper mantle from the rifted region to the rift flank may explain the observed tectono-magmatic segmentation of the Transantarctic Mountains. We infer that this process caused a regional upwarp of the Curie isotherm under the Admiralty and Southern Cross Blocks of the Transantarctic Mountains, and facilitated extensional faulting, renewed uplift, and volcanism in the Neogene. (C) 2008 Elsevier B.V. All rights reserved.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/j.tecto.2008.11.028
Programmes: BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Greenhouse to Icehouse. Evolution of the Antarctic Cryosphere and Palaeoenvironment
ISSN: 0040-1951
Additional Keywords: aeromagnetic anomalies, transarctic mountains, cenozoic magmatism, strike-slip faulting, continental rifting, Curie isotherm
NORA Subject Terms: Glaciology
Earth Sciences
Date made live: 02 Sep 2010 15:42
URI: http://nora.nerc.ac.uk/id/eprint/10858

Actions (login required)

View Item View Item