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[1] Terrestrial and oceanic ecosystem components of the
Earth System models (ESMs) are key to predict the future
behavior of the global carbon cycle. Ocean ecosystemmodels
represent low complexity compared to terrestrial ecosystem
models. In this study we use two ocean biogeochemical
models based on the explicit representation of multiple plank-
tonic functional types. We impose to the models the same
future physical perturbation and compare the response of
ecosystem dynamics, export production (EP) and ocean
carbon uptake (OCU) to the same physical changes. Models
comparison shows that: (1) EP changes directly translate
into changes of OCU on decadal time scale, (2) the represen-
tation of ecosystem structure plays a pivotal role at linking
OCU and EP, (3) OCU is highly sensitive to representation
of ecosystem in the Equatorial Pacific and Southern Oceans.
Citation: Manizza, M., E. T. Buitenhuis, and C. Le Quéré (2010),
Sensitivity of global ocean biogeochemical dynamics to ecosystem
structure in a future climate, Geophys. Res. Lett., 37, L13607,
doi:10.1029/2010GL043360.

1. Introduction

[2] Anthropogenic emissions of fossil fuels are the main
cause of the increase in atmospheric [CO2] started with the
industrial revolution [Barnola et al., 1995]. The increase in
atmospheric [CO2] and the warming of the climate system
influence the natural carbon cycle which could potentially
amplify the initial change [Friedlingstein et al., 2006]. The
response of the carbon cycle to elevated [CO2] and climate
change thus represents one of the major uncertainties in future
climate projections [Friedlingstein et al., 2006; Le Quéré
et al., 2007]. The future response of the climate system could
be explored by using ESMs with the terrestrial and oceanic
ecosystems that interact with climate via the carbon cycle.
[3] Prentice et al. [2001] showed that terrestrial ecosystem

models, when projected into future climates [Cramer et al.,
2001], showed a wide spread in their projections of the land
CO2 sink. This feature can be mostly attributed to the fact
that terrestrial ecosystem models are based on the ecosystem
dynamics based on Plant Functional Types that have dif-
ferent physiological traits.
[4] Ocean ecosystem models evaluated in the analysis of

Prentice et al. [2001] either completely lacked the explicit
representation of ecosystem dynamics or implemented

simple models based on a single type nutrient pool (N),
phytoplankton (P), zooplankton (Z), and organic detritus (D)
responsible for the export of carbon (so‐called NPZD
models) [Franks, 2002]. Ocean ecosystem models recently
started to evolve from NPZD into Dynamic Green Ocean
Models (DGOMs) that, following the example of terrestrial
models, include several Plankton Functional Types (PFTs)
and multiple nutrients limitation [Aumont et al., 2003;Moore
et al., 2004; Le Quéré et al., 2005; Follows et al., 2007]. PFTs
provide a link between ecosystem dynamics to biogeo-
chemical cycles and climate.
[5] In this study, we compare the response of two DGOMs

to climate change showing (1) how climate change might
impact the pelagic ecosystem with consequences for EP and
OCU and (2) how different ecosystem parameterizations
trigger regional differences.

2. Methods

2.1. Ocean General Circulation Model

[6] We use ORCA‐LIM, a global Ocean General Circu-
lation Model (OGCM) including a Sea‐Ice component
[Timmermann et al., 2005] to model the physical ocean that
is based on OPA [Madec et al., 1999] and LIM [Fichefet and
Morales‐Maqueda, 1999]. A more detailed description of
ORCA‐LIM coupled to biogeochemical modules is given
by Manizza et al. [2008].

2.2. Dynamic Green Ocean Models

[7] We couple two different DGOMs to ORCA‐LIM,
PISCES‐T and PlankTOM5. PISCES‐T is a modified version
of the PISCESmodel [Aumont et al., 2003; Bopp et al., 2003]
representing the ecosystem dynamics based on two phyto-
plankton types (mixed‐phytoplankton and silicifiers) and
two zooplankton (micro and meso) types. PISCES‐T also
implements a new parameterization of mesozooplankton
metabolism [Buitenhuis et al., 2006].
[8] PlankTOM5 builds from PISCES‐T, it has one addi-

tional phytoplankton PFT (calcifiers) [Manizza, 2006; Vogt
et al., 2010] and implements the ballasting effect of biogenic
calcite and opal on large sinking particles. Both DGOMs
implement phytoplankton growth co‐limited by light, phos-
phorus, iron and silicate for silicifiers, and they are both
coupled to ORCA‐LIM on‐line. All the simulations were
initialized using observed fields of PO4

3−, SiO3
− and O2, DIC,

and Alkalinity of present climate.

2.3. Model Forcing Set‐up

[9] For the control simulations, ORCA‐LIM is forced by
the atmospheric variables obtained from the NCEP/NCAR
re‐analyzed forcing [Kalnay et al., 1996] from 1948 to 2004
for the (yNCEP). For the climate change simulations, we first
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calculated a climatic anomaly for each atmospheric variable
contained in the re‐analysis with a 30‐year running mean
(YIPSL30

). The climatic anomalies were obtained from the
simulations carried out with the IPSL Earth System Model
[Friedlingstein et al., 2001] following the IPCC A2 scenario
[Nakicenovic and Swart, 2000] for the period 2005–2061.
We then obtained climate change forcing (yCC) for the
projected period 2005–2061 adding the smoothed anomalies
to the unsmoothed NCEP/NCAR re‐analyzed forcing:

 CC ¼  NCEP þ YIPSL30 ð1Þ

We retain the interannual variability of yNCEP, and prevent
double counting variability by using the smoothed YIPSL30

as done by Manizza [2006] and Vallina et al. [2007]. For
both DGOMs, we carry out two simulations. In the control
simulation we use the atmospheric forcing of 1948–2004
period (but with projected 2005–2061 atmospheric [CO2])
whereas in the climate change simulation we apply the

atmospheric forcing of the 2005–2061 period (both for CO2

and climate).

3. Results and Discussion

3.1. Ocean Physical Response to Climate Change

[10] Anthropogenic climate change impacts the main
physical properties of the upper ocean. The sea surface tem-
perature increases (by up to 2°C), mixed layer mostly
shoals (by up to 10 meter) between 60°N and 60°S and the
extension of sea‐ice reduces (by up to 15%) in the polar
oceans (see auxiliary material).1 These changes are also
comparable to previous studies carried out with coupled
climate models, though with some differences in spatial
distribution and magnitude of the responses [Sarmiento et al.,
1998; Friedlingstein et al., 2001; Flato, 2004; Steinacher
et al., 2010]. All these physical changes influence the
metabolism of planktonic organisms through the change

PISCES-T PlankTOM5

Figure 1. Change in RCC at ocean surface of (top) silicifiers, (top middle) mixed‐phytoplankton, (bottom middle) calci-
fiers and (bottom) change in mesozooplankton biomass for (left) PISCES‐T and (right) PlankTOM5 as average of the last
five years. Units are % for RCC and mmolC L−1 for mesozooplankton.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GL043360.
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in water temperature and the availability of both light and
nutrients.

3.2. Ecosystem Response and Biogeochemical
Dynamics

[11] In these DGOMs, climate change causes global re-
ductions in primary production, EP, and OCU comparable
to previous studies by Friedlingstein et al. [2001, 2006] and
Steinacher et al. [2010] (see also auxiliary material). For
each DGOM, we calculate the relative contribution of PFTs
to total carbon content (RCC) for each PFT at the surface of
the ocean as follows:

RCC ¼ CPFT

CTOTAL
� 100 ð2Þ

and we show the difference between the climate change
and the control run. The differences in the two DGOMs
(Figure 1) show similar general spatial patterns but evident
ecosystem re‐arrangements occur in two specific regions:
(1) the Equatorial Pacific Ocean and (2) the Southern Ocean.
[12] In the Equatorial Pacific Ocean, PISCES‐T does not

show any major shift in RCC of the two PFTs (Figure 1,
left). However, in PlankTOM5 the modified ecological
niche is taken over by the calcifiers that have a better affinity
for more stratified waters and almost totally outcompete
the other two PFTs. The change in EP (Figure 2, top) is
directly influenced by the response of ecosystem dynamics
to physical change. In PlankTOM5 the EP reduces by up to
30 gC m−2 a−1 whereas in PISCES‐T the change is not
notable. This difference is due to the decrease in mesozoo-
plankton biomass in PlankTOM5 (Figure 1, bottom) due to
the decrease of silicifiers, their preferred food source.

Mesozooplankton fecal pellets production is one of the
major routes for producing fast sinking particles. There is
only a limited effect from increased calcifiers on increased
sinking speed due to the ballasting by biogenic calcite
because over much of the low latitudes the sinking speed is
already at its maximum of 150 meter day−1. In both DGOMs
the CO2 outgassing of the Equatorial Pacific Ocean decreases
in a future climate (by 11.3 and 54 TgC a−1, for PISCES‐T
and PlankTOM5, respectively), due to the reduced upwelling
of carbon‐rich waters (Figure 2, bottom). However, the
reduction in outgassing is less in PlankTOM5 (29.5 TgC a−1)
than in PISCES‐T (54 TgC a−1) because of the greater
reduction in EP driven by the ecosystem response.
[13] In the Southern Ocean (south of 40°S) where sea‐ice

cover evidently reduced silicifiers increase their RCC by
up to 60% in both DGOMs (Figure 1, top), although in
PISCES‐T they compete for resources with only one com-
petitor (mixed‐phytoplankton) whereas in PlankTOM5 they
compete with two PFTs. The increase in RCC silicifiers is
mainly due to the increase in vertical nutrient supply caused
by the wind‐driven mixing in more ice‐free zones. How-
ever, the increase in diatoms RCC is partially larger in
PlankTOM5 than in PISCES‐T and this feature directly
reflects on the increase in EP (91.7 TgC a−1 in PISCES‐T
and 85.7 TgC a−1 in PlankTOM5) (Figure 2, top). Again, the
different response in EP (91.7 and 85.7 TgC a−1 for
PISCES‐T and PlankTOM5, respectively) directly translates
in a different enhancement of OCU that is larger in PISCES‐T
(43.6 TgC a−1) than in PlankTOM5 (20 TgC a−1) (Figure 2,
bottom).
[14] It is worth to note that the reduction in OCU is dif-

ferent in the magnitude for the two DGOMs (Figure 3, top

PISCES-T PlankTOM5EP

OCU

Figure 2. Change in (top) EP and (bottom) OCU for (left) PISCES‐T and (right) PlankTOM5 between climate change and
control run as average of the last five years. Negative differences in sea‐to‐air CO2 flux indicate an increase in OCU caused
by climate change.
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right) although the climate‐driven trend is similar. In fact, in
PISCES‐T the reduction in OCU induced by climate change
is always smaller than 0.1 PgC a−1 whereas in PlankTOM5
this difference is up to 0.18 PgC a−1 although the applied
physical forcing is identical. This trend in OCU mostly re-
flects the same as shown by EP (Figure 3, top left) in both
models highlighting the importance of the marine ecosystem
representation for the OCU in a future climate.
[15] In both models a reduction in EP would mostly

translate into a reduction in OCU at comparable timescales
(Figure 3, bottom right). In PISCES‐T, 79 ± 9% of the
change in EP is reflected in a change in the sea‐to‐air flux,
while in PlankTOM5 the slope was very similar at 85 ± 6%.
Presumably, the other ∼20% is dissipated due to change
in concentration gradient of dissolved inorganic carbon
between the surface and the deep ocean. In these simula-
tions, the OCU response driven by the biological EP is the
sum of several responses, including changes in ocean
physics and chemistry. To isolate the sensitivity of the OCU
to changes in biogeochemical cycling, we additionally carried
out five sensitivity simulations of 10 years each (with
PISCES‐T only) in which we varied EP modifying the deg-
radation rate of particulate organic matter (Figure 3, bottom
left). The slope was again very similar to 70 ± 15%. These
results confirmed the direct OCU response to EP changes.
Since the sensitivity simulations were all performed in the
same physical setting and the applied climate change the
same for two DGOMs, this response is shown to be mostly
independent of changes in ocean circulation, and to have the
same slope for different drivers of the biological changes.

These simulations show that these results can be comparable
to the potential response of the marine ecosystem to climate
change.
[16] The strong link between EP and OCU in our results

is also confirmed by other studies where EP was modified
either by changing either the aeolian dust flux [Moore et al.,
2006] or by enhancing the nutrients supply in the coastal
regions [Giraud et al., 2008].

4. Conclusions

[17] In this study we have shown that a more complete
representation of the ecological complexity in DGOMs can
lead to different responses of both PFTs distributions and
EP to climate change, with direct consequences for OCU
at regional scale. A future warmer climate could produce
an expansion of the permanently stratified ocean regions
[Sarmiento et al., 2004] favoring diazotrophs [Boyd and
Doney, 2002] that are well adapted to such environmental
conditions and that are not represented in the models used in
this study. Adding more PFTs to these two models might
create a further re‐arrangement in the ecosystem structure
while responding to climate change with potential con-
sequences for EP and OCU at regional scales.
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