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ABSTRACT1

Specific surface area (SSA) of headwater stream bed sediments is a fundamental prop-2

erty which determines the nature of sediment surface reactions and influences ecosystem-3

level, biological processes. Measurements of SSA – commonly undertaken by BET4

nitrogen adsorption – are relatively costly in terms of instrumentation and operator5

time. We present a novel approach for estimating fine (< 150�m) stream bed sedi-6

ment SSA from their geochemistry – after removal of organic matter – for agricultural7

headwater catchments across 15 400 km2 of central England. From a regional set of8

1972 stream bed sediment sites with common characteristics for which geochemical9

data were available, we selected 60 samples – based on maximising their variation in10

aluminium concentrations – and measured their BET SSA by nitrogen adsorption. Af-11

ter careful selection of potential regression predictors following a principal component12

analysis and removal of subset of samples with the largest Mo concentrations (> 2.5 mg13

kg−1), we identified four elements as significant predictors of SSA (ordered by decreas-14

ing predictive power): V>Ca>Al>Rb. Our optimum model from these five elements15

accounted for 73% of the variation in bed sediment SSA (range 6 to 46 m2g−1) with16

a root mean squared error of prediction – based on leave-one-out cross validation – of17

6.3 m2g−1. We believe V is the most significant predictor because its concentration18

is strongly correlated both with the quantity of Fe-oxides and clay minerals in the19

stream bed sediments, which dominate sediment SSA. Sample heterogeneity in SSA –20

based on triplicate measurements of subsamples – was a substantial source of variation21

(standard error=2.2 m2g−1) which cannot be accounted for in our regression model.22

We used our model to estimate bed sediment SSA at the other 1792 sites and23

at 30 duplicate sites where an extra sediment sample had been collected, 25 metres24

from the original site. By delineating sub-catchments for our headwater sediment sites25

we selected only those sub-catchments with a dominant (> 50% of the sub-catchment26

area) bedrock formation and land use type; the bedrock and land use classes accounted27

for 39 and 7% of the variation in bed sediment SSA, respectively. Variation in esti-28
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mated, fine bed sediment SSA from the paired, duplicate sediment sites was small (2.729

m2g−1), showing that local variation in SSA at stream sites is modest when compared30

to that between catchments. We discuss how our approach might be applied in other31

environments and its potential limitations.32

Keywords: bed sediment, England, vanadium, agricultural catchments, phosphorus,33

land use, geology34

1. Introduction35

Specific surface area (SSA) is a fundamental material property of solids often expressed36

as total surface area per unit of mass. In both soil and stream sediments, SSA is a37

dominant factor controlling particle surface reactions and is closely related to a range of38

chemical properties that also influence biological processes. For example, surface area is39

strongly correlated with cation exchange capacity (Petersen et al., 1996), the dominant40

factor determining the magnitude and type of adsorption-desorption reactions between41

dissolved ions and mineral surfaces in soil pore waters and stream beds. Specific surface42

area may exert an important control on phosphate sorption. Where sediments are43

dominated by fine-fraction minerals – clay-size particles and associated amorphous Fe44

and Al hydr(oxide) coatings – they also have a larger SSA for phosphorus sorption45

(Horowitz and Elrick, 1987) which has significant implications for water quality in46

agricultural catchments (Withers and Jarvie, 2008).47

The heterogeneity of physical stream bed habitats – dominated by the size and48

surface texture of sediment – has been shown to have a significant impact on primary49

productivity of stream algae and respiration of benthic biofilms (Cardinale et al., 2002)50

thus controlling ecosystem-level processes. Also, larger quantities of organic matter51

tend to occur in sediments with greater SSAs (Mayer, 1994), although this is by no52

means a universal relationship (Galy et al., 2008). Interactions between organic matter53

and mineral surfaces leads to occlusion of the latter and the formation of aggregates54
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(Horowitz and Elrick, 1987); the SSA of sediment before and after removal of associated55

organic matter may be quite different (Wagai et al., 2009). In this study, we focus on56

the SSA of the mineral component of fine sediments – collected beneath the oxic layer57

of the stream bed – after the removal of organic matter.58

For weathered granular materials encountered at the Earth’s surface, one ap-59

proach for estimating sediment SSA is to measure the particle size distribution and60

make assumptions about particle shape, but this does not account for the area as-61

sociated with surface textures which can be very large for certain minerals such as62

iron-oxides and expansible clay. The SSA of a material which includes the fine struc-63

ture and texture of the particles is typically measured by gas adsorption using the64

BET isotherm (Brunauer et al., 1938). Specific surface area measurement based on the65

BET isotherm – commonly applied using nitrogen gas – is relatively costly in terms of66

instrumentation, and requires a reasonable amount of time for sample preparation and67

instrument operation. Alternative, cost-effective approaches for accurate estimation of68

SSA include visible and near infra red diffuse reflectance spectroscopy (VNIR-DRS;69

Ben-Dor and Banin, 1995); in their study the authors accounted for 70% of the vari-70

ation in SSA in 91 soil samples using multiple linear regression analysis of the soil71

spectra. An advantage of VNIR-DRS is that quartz has no spectral signature in the72

visible and near infra red range; those mineral phases with larger surface areas – such73

as amorphous iron-oxides and clay minerals – are dominant features of the spectra.74

A recent study demonstrated that the particle size fractions of soil can be esti-75

mated accurately from its geochemistry (Rawlins et al., 2009). The fact that the SSA76

of fine bed sediment is related to the naturally occurring elements in that sediment77

suggest that it might also be predicted from its elemental composition. Our knowl-78

edge of geochemistry and mineralogy would suggest certain elements are likely to be79

strongly correlated with SSA; aluminium because of its occurrence in clay minerals and80

Fe and Mn associated with their amorphous oxides (Wang et al., 1997). Strong linear81

correlations (r > 0.9) between several elements (e.g. Al, Fe and Cr) in fine (< 125�m)82
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bed sediments and their SSA were demonstrated for 17 samples from a range of sites83

across the USA (Horowitz and Elrick, 1987). However, the diverse range of chemical84

processes – Fe and Mn oxyhydroxide precipitation, changes in redox potential with85

depth from the sediment water interface – operating in the stream environment may86

be too complex for consistent relationships to be observed.87

The increasing availability of comprehensive geochemical data for fine bed sed-88

iments from international (Salminen et al., 2005) and national-scale (Johnson et al.,89

2005) surveys of both large and small catchments makes assessment of the relationship90

between bed sediment geochemical composition and SSA achievable. The availability91

of accurate estimates of SSA for a large number of sites could help to determine the92

relative importance of landscape factors – such as bedrock geology and land use – on93

the SSA of fine bed sediment. Based on the strong positive relationships observed be-94

tween SSA and the proportion of the finest (< 2�m) sediment size fractions (Horowitz95

and Elrick, 1987), estimates of SSA for many headwater streams could help to identify96

significant sources of the finest sediment to large catchment systems and the mitigation97

of their impacts through strategic management (Owens et al., 2005).98

In this paper we present our investigation of the relations between SSA and99

elemental composition of fine fraction, headwater stream bed sediments across a large100

region of central England. We explored the geochemical data and established that there101

are strong linear relations with SSA. We sought the most effective significant multiple102

regression equations for prediction from the data that we have from the regional surveys103

of stream sediments undertaken by the British Geological Survey. We have used our104

knowledge to select regressors so as to avoid redundancy and misleading inference from105

chance inclusions of elements.106

We present our predictions of fine fraction bed sediment SSA and their errors,107

and discuss the limitations of our approach. The equations are used to investigate local108

variation in bed sediment SSA, and the importance of bedrock geology and land use109

type for headwater bed sediment SSA.110
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2. Theory111

2.1 Multiple regression112

Multiple linear regression is a standard statistical method for prediction. The regression113

model, expressed in matrix form is114

y = zT� + " , (1)

in which z is vector of length p + 1 containing the values of p predictor variables plus115

a first element, a dummy, set to 1, � is a vector of coefficients, the first of which is116

a constant, and " is a random residual. So, to predict an unknown value, say y0, we117

compute its estimate as118

ŷ0 = zT
0 � , (2)

where z0 is the vector of known values for the same sample of bed sediment.119

We must first have obtained the coefficients �. If we have data on both the120

variable y and the predictors z1, z2, . . . , zp for a sample of size n then we can estimate121

� by122

�̂ =
(
ZTZ

)−1
ZTy, (3)

where Z is a matrix of dimensions n×(p+1) and vector y is of length n. The prediction123

variance is124

s2(ŷ0) = s2(y.z) + s2(y.z)z0

(
ZTZ

)−1
zT
0 , (4)

where s2(y.z) is the variance of the residuals from the regression of y on z.125

2.2 Selection of regressors126

The British Geological Survey has determined the concentrations of 51 elements in its127

surveys of the headwater stream sediments across central England (see Figure 1). Some128

of these were unlikely to be related to SSA and so these were ignored. This left 21129

elements to consider (see Methods). To have attempted to predict SSA from all these130
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21 elements in a single model would have entailed two risks, (i) the propagation of errors131

in the regression coefficients of weak predictors into the final predicted values and (ii)132

numerical instability caused by strong correlation among any two or more predictors.133

A common way of avoiding this difficulty is stepwise addition or elimination of the134

predictors, but this too carries risks in that the final model can depend on the order135

in which the variables are considered for addition to (in forward selection) or deletion136

from (in backward elimination) the model. Thus stepwise regression is not necessarily137

stable.138

To minimize the above risks we combined a principal component analysis (PCA)139

of the 21 variables with judgement based on experience and general understanding of140

geochemistry. The PCA showed which groups of variables were strongly correlated to141

one another and enabled us to select only one from each such group so that we should142

avoid instabilities from that source. Using our experience and understanding we chose143

elements that we thought most likely to be correlated with fine sediment SSA and144

describe the combination of these in Methods.145

2.3 Centre log-ratio transformation146

Compositional data, such as comprehensive geochemical analyses which include silicon147

and aluminium, give rise to a problem in that the components have a constant sum,148

1 (or 100%), with distributions that are curtailed at the limits of 0 and 1 (or 0 and149

100%). Standard statistical techniques devised for unconstrained random variables –150

including principal components analysis based on the correlation matrices of vectors of151

observations – cannot be used to analyse compositional data in its raw form. Aitchi-152

son (1986) proposed a way to avoid this difficulty by using the centred log-ratio (clr)153

transformation. If there is a composition X of D elements:154

X = [x1, x2, . . . , xD], (5)

such that155

xi > 1, 2, . . . , D, (6)
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the clr transformation of an observation (xi) is:156

clr(X) = ln((xi)/g{(xi)}) (7)

and where g is the geometric mean of the elements of the composition:157

g = D
√
x1 × x2 . . .× xD. (8)

We can analyse the transformed data as we can any other multivariate normal data.158

3. Methods159

3.1 Study regions and surveys160

Figure 1 shows the stream sediment sampling locations of the study region which covers161

around 15 400 km2 of central England. The stream sediment samples were collected by162

the G-BASE project of the British Geological Survey (Johnson et al., 2005). The eleva-163

tion range across the region is 20 – 255 m above sea level, with undulating topography;164

the mean slope angle is around 2.5 ∘. The stream sediment sampling was undertaken165

in the summers of 1997, 1998 and 1999 in rural and peri-urban areas. Bedrock in166

the study region ranges in age from Precambrian to Cretaceous with a wide range167

of predominantly sedimentary lithologies including limestones, sandstones, siltstones,168

mudstones, shale, coal measures, marls, ironstones and chalk (Figure 2). There are also169

extensive superficial deposits including glacial tills, glacial sands and gravels, marine170

and river alluvium, river terrace deposits, and to the east of the region, peat deposits171

(Sylvester-Bradley and Ford, 1968). The soils are dominated by Brown Earths, Surface172

Water Gleys, Pelosols, Ground Water Gley Soils (Soil Survey of England and Wales,173

1983a; Soil Survey of England and Wales, 1983b). The land use types include arable174

(48%), grassland (21%), built-up areas (13%), woodland (7%) and small areas of a175

range of other land use types (11%.)176

Potential stream sampling sites were identified using Ordnance Survey maps.177

Mainly first and second order streams were selected, either avoiding or located upstream178

of obvious sources of contamination such as road intersections and farm buildings.179
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Where possible, sediment was collected from central areas of active stream beds after180

removal of the upper layer of oxidised sediment. Between 15 and 25 kg of sediment181

was wet-screened on site to collect the fraction finer than 150�m typically yielding a182

final mineral mass of approximately 500 g. All samples were returned to a local field183

base for air-drying. The location of each stream bed sampling site was recorded using184

a handheld GPS with an accuracy of around 5 m. At site, the width of each stream,185

stream order and a classification of flow conditions during sampling were recorded. An186

estimate of the organic matter content of the sediment (low, medium or high) was also187

recorded.188

In total there were 5047 stream sediment sampling sites across the study region;189

at sixty-five of these sites, an extra or duplicate sample was collected from a location190

within 25 m of the original sampling site; the same sediment sampling protocol was191

applied at the duplicate sites. The sites across the study region (n=5047) comprise a192

range of : i) stream orders (1st to 4th), ii) flow conditions (no flow to bank full), and193

iii) stream channel sizes (widths of a few feet to several metres). We wished to make194

comparisons of fine bed sediment for streams of similar sizes and flow conditions to195

avoid any bias such variation might introduce into our estimates of SSA. We therefore196

restricted the number of stream sediment sampling sites to: i) first and second order197

streams, ii) low to moderate flow conditions, and iii) streams with channels of between 1198

and 3 metres width. Of the original 5047 stream sediment sites, a total of 1972 sites met199

these conditions. We limited our study to these sites and included 30 of the 65 duplicate200

sites which also met these conditions. We use the paired sites (original and duplicate)201

to provide an estimate of the local variation in fine bed sediment composition. Their202

locations are shown in Figure 1.203

On return to the laboratory, all samples were freeze-dried, coned and quartered204

and a 50-g sub-sample was ground in an agate planetary ball mill. The total concen-205

trations of major and trace elements were determined in each sample by wavelength206

and energy dispersive XRFS (X-ray fluorescence spectrometry).207
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We wished to select a subset of 60 samples for SSA measurement. We ranked all208

1972 samples from smallest to largest by their total Al content because we considered209

that Al was the element most likely to be closely related to SSA. We randomly selected210

one sample from equally sized groups of 33 samples from our ranked set to ensure that211

we would capture the full range of Al concentrations. We plotted the locations of the212

60 samples across the study region to check that they were representative of the entire213

region, shown in Figure 1. We analysed each of the 60 selected samples for their SSA214

(see below), and used the remaining samples to estimate SSA from their geochemistry.215

3.2 Total organic carbon and BET specific surface area analysis216

Two sub-samples each weighing approximately 10 g were taken from each of the sixty217

selected sediments; one for the estimation of total organic carbon (TOC), the other218

for SSA. For TOC, each 300 mg sub-sample was treated with a small quantity of219

HCl (5.7 M) to remove inorganic carbon and total organic carbon was estimated on220

the remaining sample by combustion in a Costech ECS4010 Elemental Analyser (EA)221

calibrated against an Acetanilide standard. Replicate analysis of well-mixed samples222

indicated a precision of ± < 0.1%.223

Prior to BET SSA analysis, all organic matter was removed from the 60 sub-224

samples. Approximately 150 ml of hydrogen peroxide (H2O2; 30% by weight) was225

added to each 10 g subsample in a vessel and placed in a water bath at 60 ∘C for 3226

hours. Ethanol was added to reduce effervescence where necessary to prevent loss of227

sample material. The solution was left overnight and in the morning its temperature228

was raised to 100 ∘C for a few minutes. When the solution had cooled to leave a229

residue the same procedure was repeated one or two times until no further reaction230

occurred. The final sample residue was gently disaggregated with a pestle and mortar.231

For each of the sixty samples, approximately 1 g of each sub-sample was weighed232

out using an accurate, four decimal place mass balance. All samples were prepared233

using a Micromeritics Gemini VacPrep Degasser; the samples were degassed overnight234

at 60 ∘C prior to SSA analysis. The BET specific surface area of each sample was235
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determined using a multi pressure point analysis using a Micromeritics (Norcross, GA,236

USA) Gemini VI 2385C series physisorption system. A carbon black standard was237

analysed with each batch of samples to monitor accuracy and precision. Triplicate238

analyses were undertaken on three separate sub-samples of six representative samples239

to estimate the degree of sub-sampling heterogeneity. Repeated, triplicate analyses240

were also undertaken on six samples to estimate precision.241

3.3 Landscape analysis242

We used a 5 m resolution digital terrain model (DTM; Intermap, 2009) of the study re-243

gion and hydrological functions in ArcMap9.3TM(ESRI) to generate drainage networks.244

We then superimposed on this the locations of each of the 1972 sediment sampling sites245

and snapped these to the nearest stream, ensuring that where two streams were close246

together, the correct stream had been selected by reference to positions which had been247

recorded on hardcopies of Ordnance Survey maps during sample collection. We then248

used hydrological functions and the DTM to delineate polygons of the sub-catchment249

areas draining to each of the sampling sites.250

We used digital versions of the 1:50 000 maps of bedrock geology of England,251

part of DigiMap GB of the British Geological Survey (2006) to determine the types252

and proportions of each bedrock formation which outcrop in each sub-catchment. We253

overlaid the sub-catchment polygons onto a layer of bedrock polygons with codes for254

each class in a GIS system, and cut the former into sections using the latter. We255

then used the GIS to calculate the proportions of each bedrock type in each sub-256

catchment based on the codes for each bedrock formation polygon. We considered257

including the superficial deposits as a further classification but when we added this258

as another layer the number of polygon classes increased to such an extent that we259

decided that statistical analysis and interpretation of the results would have been too260

complex. Using the same procedure, we used a digital version of the 25 m resolution261

Land Cover Map 2000 (Fuller et al., 2002) for the study region with codes for each262

dominant habitat type to determine their proportions in each sub-catchment of the263
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sediment sampling sites.264

To determine the importance of bedrock formation on estimated bed sediment265

SSA, we first needed to identify those sub-catchments which were dominated by one266

lithology or land-use type and remove any catchments which were anomalously large.267

We selected those sub-catchments where a single bedrock formation accounted for more268

than 50% of the catchment area (n=1340) and where the sub-catchment area was < 40269

km2. We applied the same approach to the sub-catchments based on the land cover270

data, selecting those which were dominated (> 50% of total area) by one habitat type271

(n=415). We then used the bedrock and habitat codes for these sub-catchments in272

a one-way analysis of variance to determine their importance for bed sediment SSA273

based on our estimates.274

3.4 Exploratory analysis and choice of predictor variables275

Of the 51 elements recorded across the study region we chose 21 which seemed likely276

to be related to SSA. They were as follows (with their detection limits in mg kg−1):277

Al (530), As(1), Ba(5.1), Ca(720), Co(1.2), Cr(1.3) , Fe(70), Ga(0.7), Hf(0.7), K(415),278

Mg(600), Mn(77), Ni(0.6), Rb(0.5), Si(470), Sr(0.6), Ti(120), Th(0.7), U(0.6), V(1.3),279

and Zr(0.8). In those cases where element concentrations in each sample were below280

the detection limit, the concentrations were set to half this value. Table 1 lists their281

means, medians, standard deviations and skewness coefficients, and also their values282

after clr transformation.283

Prior to a principal component analysis, we first closed the composition of the 21284

geochemical elements – ensuring that the sum of each sample is one – using the closure285

function (clo) in the R package compositions (van den Boogaart et al., 2008). After286

converting the data to a compositional data structure using the ‘acomp’ function we287

applied the clr transformation (Equation ?? and ??). We then analysed the correlations288

between the principal components of the transformed data based on the correlation289

matrix, avoiding the problems typically associated with compositional data analysis.290

Table 2 lists the leading eigenvalues of the correlation matrix. The first accounts291
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for more than a quarter (27%) of the variance, the second more than a fifth (21%)292

and the third, an eight (13%). The first four principal components accounted for 71%293

of the variance. We converted the eigenvectors to correlation coefficients between the294

component scores and the original variates by295

cij = aij
√
vj/�2

i , (9)

where aij is the ith element of the jth eigenvector, vj is the jth eigenvalue, and �2
i is296

the variance of the ith original variable. The scatter of the coefficients in unit circles in297

the planes of the first and second dimensions is plotted in Figure 3a, and first and third298

dimensions in Figure 3b. In general, the closer the points lie to the circumference of299

one of these circles (i.e. larger correlation coefficients) the better are they represented300

in that projection. The first principal component (PC) is one of magnitude, whilst the301

second and third PC discriminate.302

The elements exhibit a broad range of correlation coefficients with the first PC;303

those elements with the largest positive coefficients are Fe, Cr and V; by contrast Ba,304

Hf , K, Mg, Si and Zr, have large negative coefficients. Component 2 discriminates; Rb305

and Mn having large positive and negative coefficients respectively. Four elements (Al,306

Ti, Ga and Th) which have positive coefficients with the first and second components307

cluster together in Figure 3a. Uranium has little relation to the other elements in308

Figure 3a. In Figure 3b, the third PC is dominated by Zr and Hf which have large309

negative coefficients. Calcium had the largest correlation coefficient with the fourth310

principal component (not shown).311

We chose the following eight elements as potential predictors:312

1. Fe and Mn because their oxides have large surface areas,313

2. Al, Ga, K and Rb because of their association with clay minerals and the different314

correlations of the latter with the first three principal components,315

3. V because it was so strongly correlated with the first principal component,316
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4. Ca because it was strongly correlated with the fourth principal components and is317

a major component in feldspar minerals and carbonates318

3.5 Building the regression model319

Our eight predictors for estimating SSA by multiple linear regression do not constitute320

a closed composition; they do not sum to 100% because three of the major elements321

(Si, Fe, Mg) were not included. We needed to consider whether we should use the clr322

transformed data or the original (untransformed) data to fit linear regression models. If323

application of the clr transform helps to linearize the relationships between predictors324

and SSA there would be a basis for its use. However, our exploratory analysis did not325

show this, so we used the original, untransformed data to fit linear regression models326

to the sediment SSA values.327

Initially we used all 60 analyses of SSA to fit regression models by least squares;328

having relatively few samples we decided to use leave-one-out cross validation to test329

the accuracy of the model predictions. Regression models were formed, Equation (??),330

by forward selection and backward elimination. Four samples had large residual errors331

which we observed in scatterplots of measured and predicted values. When we investi-332

gated these samples further we noted they all had large Mo concentrations (> 2.5 mg333

kg−1; detection limit 0.8 mg kg−1) and their stream bed sampling sites occurred over334

outcrops of shale bedrock. When we removed these four samples from our dataset the335

performance of the regression models improved substantially. We chose to fit regression336

models only to the 56 sediment samples for which we had measured SSA and their total337

Mo concentrations were below this threshold. This eliminated a The models accounted338

for a large proportion (71.3%) of the variance in sediment SSA.339

We then repeated our regression analysis after removal of a single sample from340

the dataset; we used the model formed from the 55 observations to predict the SSA341

of the sample that had been removed and repeated this sequentially for each of the 56342
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samples. We then calculated the root-mean-squared-error of prediction (RMSEP):343

RMSE =

√√√⎷ 1

nV

nV∑
i=1

(ẑi − zi)2 , (10)

where zi is the measured SSA and ẑi is its predicted value from the regression model.344

We also calculated the bias in the estimates.345

To investigate the magnitude of local variation in SSA at stream sites, we used346

the optimum regression model to estimate SSA for the 30 paired, original and duplicate347

sampling sites (see Methods). We undertook a one-way analysis of variance (ANOVA)348

using the paired sites as the factor to determine the standard error of SSA (m2g−1) and349

the coefficient of variation (%). Finally, we investigated the influence of bedrock geology350

and land use type on fine stream sediment SSA by examining box and whisker plots351

where these factors were classifiers and we undertook one-way ANOVA to calculate the352

amount of variation in bed sediment SSA they account for.353

A summary of the number of stream sediment sites used in the different compo-354

nents of this study and the criteria for their selection are presented in Table 3.355

4. Results356

4.1 Geochemistry and SSA357

The minimum and maximum TOC contents of the 60 samples prior to the removal of358

organic matter were 1.0 and 8.3%, respectively with a mean content of 3.2%. The SSA359

of the fine (< 150 �m) bed sediment in the sixty samples varied by almost one order360

of magnitude ranging from 5.98 to 46.04 m2g−1 with a mean of 22.2 m2g−1. The SSA361

from repeat analysis of six subsamples had a maximum surface area of 52.16 m2g−1.362

The correlation between SSA and TOC for the 60 samples was weak (linear Pearson363

correlation r = 0.02; non-linear Spearman-rank correlation r = 0.06).364

The triplicate analyses of subsamples from six of the sixty samples had a SSA365

standard error of 2.2 m2g−1 and a coefficient of variation 8.4%. Repeat analyses of the366

same subsamples showed the instrument precision was excellent; the standard error of367

repeat analyses was 0.035 m2g−1 whilst the coefficient of variation was 0.1%. Sample368
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heterogeneity is therefore a significant source of variation in our fine bed sediment SSA369

analyses.370

The optimum linear regression model accounted for 72.7% (adj R2) of the vari-371

ation in fine bed sediment surface area with a residual standard error of 5.28 m2g−1.372

A scatterplot of measured versus predicted values from application of the regression373

model is shown in Figure 4. The four elements with greatest predictive power were:374

V>Ca>Al>Rb, in order of decreasing absolute value of t; Table 4 lists the model co-375

efficients. The root mean square error of prediction (RMSEP; Equation ??) from the376

leave-one-out cross validation was 6.3 m2 g−1 and the bias was −0.32 m2 g−1. We feel377

that the prediction errors and bias are sufficiently small to justify estimation of SSA378

using the regression model for the sediments in similar streams across the study region379

and for the duplicate sites (Figure 5).380

We can attempt to interpret the regression coefficients of these predictors us-381

ing our knowledge of mineralogy and geochemistry. Vanadium (V) is the most sig-382

nificant predictor with a positive coefficient; this may be because Fe-oxyhydroxides383

formed in soil environments incorporate VIII into their structure (Schwertmann and384

Pfab, 1996). So V may be a useful indicator of the quantity of large SSA amorphous385

Fe-oxyhydroxides (Wang et al., 1997) which have been transported into the stream386

environment. Another potential contribution to larger SSA is the occurrence of V in387

micaceous minerals such as roscoelite or VIII in the octahedral position of clay miner-388

als with substantial SSAs (Breit and Wanty, 1991). Calcium has a negative coefficient389

(Table 4) and so is negatively correlated with SSA; calcium concentrations may be390

dominated by its occurrence in carbonate minerals which have a relatively small SSA.391

Aluminium and rubidium (Rb) were also strong predictors and this may be due to392

their occurrence in clay minerals, the latter because of its similar ionic radii with – and393

replacement of – potassium (K) in K-bearing clay minerals.394

After taking natural logarithms of the measured total P concentrations to reduce395

the positive skewness of its distribution (log P skewness= 0.52), log total P had a small396
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positive correlation with estimated SSA (r = 0.06); we discuss this further below.397

4.2 Local variation in SSA398

The standard error from a one-way analysis of variance for SSA estimated at the 30399

duplicate sites was 2.7 m2g−1 with a coefficient of variation of 12.3%. This suggests400

that local variation at stream sites is modest when compared to the range of SSAs,401

considering the standard error of SSA for sub-sample analyses was 2.2 m2g−1. This402

suggests the vast majority of the variation in SSA occurs either between headwater403

catchments or at larger scales along stream reaches, not locally (<25 m) within stream404

beds.405

4.3 Landscape factors406

The 10tℎ and 90tℎ percentiles of the cumulative distribution of the sub-catchment areas407

across the study region were 0.6 and 13.3 km2, respectively; the median was 2.43 km2.408

The results of one-way ANOVAs based on bedrock geology and land cover type are409

shown in Table 5. There were a total of 66 bedrock types which accounted for a410

large proportion (38.7%) of the variation in bed sediment SSA. This is shown in the411

form of a boxplot for the 20 dominant bedrock formations (Figure 6). The median412

SSA of bedrock types with larger amounts of coarse quartz (sandstones and siltstones)413

generally have smaller median SSAs than the clay and mudstone lithologies. The414

Northampton Sand is an exception; both it and the Marlstone Rock Formation which415

outcrop in this region are known to contain large quantities of iron mineralisation and416

associated arsenic (Appleton et al., 2008). Soils developed over Jurassic ironstones in417

central England are known to contain sedimentary iron oxide phases (Breward, 2007)418

which account for the larger SSAs in the stream bed sediments derived from them.419

The land cover types for 90% of the selected sub-catchments were either arable420

(n=222) or improved grassland (n=174); these were selected because they were dom-421

inated (area > 50%) by one land cover type. In total there were eight classes of422

dominant land cover type which accounted for 7% of the variation in bed sediment423
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SSA. Based on an unpaired t-test, the median SSA of the fine bed sediment in the424

arable dominated catchments (21.2 m2g−1) was significantly larger (P = 0.0016) than425

the median for the improved grassland dominated catchments (18.1 m2g−1) which is426

consistent with studies that have shown greater erosion of topsoil occurring in the427

former (Fullen, 1997).428

5. Discussion429

We developed a regression model which can make reasonably accurate estimates of430

fine (< 150�m) bed stream sediment SSA based on four geochemical predictors in431

predominantly agricultural headwater catchments over a substantial area of lowland432

England, with a broad range of sedimentary bedrock types. Our approach needs to be433

tested in more diverse geochemical and geomorphological environments, such as upland434

areas with more acidic streamwater and also for different lithologies such as igneous435

and metamorphic rocks. The use of sediments sieved to a pre-determined size fraction436

provides us with only a partial understanding of the surface area properties of stream437

bed sediments. If we knew the mass of material required to produce a known mass of438

< 150�m sediment, we could determine the relative contributions of fine versus more439

coarse (>2mm) sediment for SSA of each stream bed.440

We chose not to include the distribution of superficial deposits as a further means441

of classifying headwater catchments to understand the factors which account for vari-442

ation in bed sediment SSA; we took the view it would lead to too many classes – each443

with a small number of catchments – for our statistical analysis. The amount and444

distribution of superficial deposits across the study area is likely to account for part445

of the variation we observe in bed sediment SSA for individual bedrock types. This446

could be explored further using a more complex approach in which the proportions447

of the bedrock types and superficial deposits are used as predictors in a multiple lin-448

ear regression framework, but we considered this was beyond the scope of the current449

study.450

In areas of substantial environmental contamination, approaches to the estimation451
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of bed sediment SSA based on geochemical predictors might be prone to significant452

error or bias. With the exception of calcium (Ca) – of which large quantities are453

dispersed on land through both agricultural lime and cement used in the construction454

industry – our predictors are not typically released in large quantities by anthropogenic455

activities. Hence, we believe our approach should be applicable in most earth surface456

environments.457

Our approach for estimating fine sediment SSA is only likely to be cost-effective458

where geochemical data are available from large scale surveys such as the recent459

continental-scale geochemical survey of Europe (Salminen et al. 2005) in which bed460

sediments were collected using the same size threshold (< 150�m). Where some or all461

of the geochemical predictors are unavailable, estimation of fine bed sediment SSA by462

mid infra-red diffuse reflectance spectrometry (MIR-DRS) may be an effective, alter-463

native approach. When we applied MIR-DRS to the ground powders to the 56 in our464

study and used partial least squares regression with spectral wavelengths as predictors465

to estimate SSA, the RMSEP based on leave-one-out cross validation using four model466

components was 6.8 m2g−1. This is not a great deal larger than the RMSEP from the467

four geochemical predictors (6.3 m2 g−1).468

Previous studies have shown positive correlations between suspended sediment469

SSA and total phosphorus in lowland streams of England (Evans et al., 2004); we470

found a small positive correlation between log total P and estimated sediment SSA for471

1792 sites in headwater catchments. Our high-resolution estimates of SSA could help to472

highlight catchments which have the potential to store large quantities of phosphorus473

in their fine bed sediment (Ballantine et al., 2009) or act as sources of fine sediment to474

larger systems, aiding catchment appraisal and the identification of areas for targeted475

management (Mainstone et al., 2008).476

6. Conclusions477

The main conclusions from our study are:478
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1. The total concentrations of four elements are sufficient to estimate reasonably479

accurately the BET SSA of the mineral component of fine bed sediments in480

predominantly agricultural headwater catchments covering 15 400 km2 of central481

England. The four geochemical predictors – in order of decreasing predictive482

power – were: V>Ca>Al>Rb. We believe V is the most significant predictor483

because it occurs in the structure of both Fe-oxides and certain clay minerals.484

2. Our model accounted for 73% (adjusted R2) of the variation in fine (< 150�m) bed485

sediment SSA; the standard error was 5.3 m2g−1 across the range 5.98 to 46.0486

m2g−1. The RMSEP from leave-one-out cross validation was 6.7 m2g−1 with a487

small negative bias (−0.32 m2g−1).488

3. Sample heterogeneity was a significant source of variation in our fine bed sediment489

SSA analyses; based on triplicate analyses of six samples the standard error was490

2.2 m2g−1 with a coefficient of variation 8.4%. This variation cannot be accounted491

for by our linear regression model.492

4. Based on SSA predictions for 30 paired sites – where duplicate samples from across493

the entire study area were collected at 25 m from their original sampling sites –494

the standard error from a one-way analysis of variance for SSA at these paired495

sites was was 2.7 m2g−1 (coefficient of variation of 12.3%). This suggests that496

the majority of variation in bed sediment SSA occurs either between headwater497

catchments or at larger scales along stream reaches, not locally (<25 m) within498

stream beds.499

5. Based on the selection of catchments with a dominant bedrock formation or land500

cover type (> 50% of the catchment area for each sediment site), these factors501

accounted for 39 and 7% respectively of the variation in bed sediment SSA across502

the study region. Catchments dominated by arable land use at this regional scale503

had (statistically significant) larger bed sediment SSAs than those in grassland504

dominated catchments.505
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6. For the sixty sediments where both SSA and TOC were measured, there was506

no linear correlation between them (Pearson correlation r=0.02). There was a507

small positive correlation between log transformed total sediment phosphorus and508

estimated bed sediment SSA (Pearson correlation r=0.06).509
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Figure captions601

Figure 1 Stream sediment sampling locations across central England and the location602

of the 60 sites (black discs) where SSA was measured and the 1792 sites where603

SSA was estimated from geochemistry (open discs). Thirty sites where duplicate604

samples were collected are also shown (grey discs). Coordinates are kilometres605

of the British National Grid.606

Figure 2 . Simplified map of bedrock geology across the study region; approximate607

scale 1:1.1 million.608

Figure 3 Projections of the correlations between variables and the principal compo-609

nent (PC) scores in unit circles: top component 2 against component 1; bottom610

component 3 against component 1. The percentage variance accounted for by611

each PC is shown in Table 2.612

Figure 4 Measured and predicted SSA (m2g−1) of fine stream bed sediments at 56613

selected sites.614

Figure 5 The spatial distribution of fine bed sediment SSA (m2g−1) in selected615

(n=1792) first and second order streams across the study region. Stream reaches616

are depicted upstream from each sediment sampling site based on the sub-catchments617

derived from a Digital Elevation Model. Coordinates are metres of the British618

National Grid.619

Figure 6 Box and whisker plot of fine bed sediment SSA (n=1236) for twenty geolog-620

ical formations across the study region. There were between 12 and 434 sediment621

sampling sites where these bedrock formations accounted for > 50% of the area622

in their drainage catchment.623
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Table 1 Summary statistics of 21 elements (units mg kg−1) in fine bed stream sediments624

(n=1972), and after centred log-ratio transformation.625

Centred log-ratio

Element Mean Median St. Dev. Skew Mean St. Dev. Skew
Al 80430 79879 14143 -0.1 7.4 0.2 -1.0
As 20.8 16.7 16.1 5.4 -1.0 0.6 0.5
Ba 576 402 2027 25.8 2.3 0.4 2.4
Ca 16062 13007 10312 0.8 5.6 0.7 -0.1
Co 19.6 16.7 14.7 11.9 -1.0 0.4 1.5
Cr 108.0 103.0 30.7 2.3 0.8 0.2 0.4
Fe 52538 48363 23296 4.1 7.0 0.3 0.6
Ga 15.0 14.9 3.6 -0.1 -1.2 0.3 -3.4
Hf 9.8 8.3 15.1 35.6 -1.7 0.5 0.0
K 20371 18594 5811 0.9 6.0 0.3 0.2
Mg 12744 7840 10887 2.0 5.4 0.7 0.7
Mn 11723 782 3364 27.6 2.9 0.6 1.8
Ni 46.5 43.2 27.5 11.3 -0.1 0.3 0.4
Rb 90.8 90.7 19.0 0.0 0.6 0.3 -3.0
Si 246460 244708 22346 -0.5 8.6 0.2 -0.3
Sr 99.5 92.8 85.5 31.7 0.7 0.3 1.2
Th 10.6 10.4 2.5 7.2 -1.5 0.3 -4.5
Ti 4719 4706 689 0.1 4.6 0.2 -0.8
U 2.5 2.4 1.4 7.5 -3.1 0.5 -1.4
V 130. 124 47.3 1.7 1.0 0.3 0.1
Zr 415 355 249 3.5 2.1 0.5 0.0
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Table 2 Leading eigenvalues and cumulants from principal component analysis of the626

correlation matrix of 21 elements after centred log-ratio transformation.627

Percentage Cumulative
Order Eigenvalue of variance percentage

1 5.669 27.1 27.1

2 4.432 21.1 48.2

3 2.717 12.9 61.1

4 2.088 9.9 71.0

628
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Table 4 Regression coefficients of multiple linear regression model for BET specific632

surface area using the original (untransformed) geochemical data (units mg kg −1).633

Element Estimate Std error t P

Intercept −1.459 4.633 −3.148 0.003

Al 23.05 ×10−5 70.50 ×10−6 3.269 19.4 ×10−4

Ca −29.95 ×10−5 59.36 ×10−6 -5.046 60.9 ×10−7

Rb 0.099 0.059 1.675 0.100

V 0.116 15.10× 10−3 7.667 48.3× 10−11

634
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Table 5. Results from one-way analysis of variance of sediment SSA for (a) bedrock635

formation (n=1338), and (b) land cover class (n=413).636

Degrees of freedom Sum of squares Mean square F ratio

(a)

Bedrock 65 38034 585 12.4

Residual 1273 60019 47

Total 1338 98053

(b)

Land cover 7 2369 38.4 4.41

Residual 406 31166 76.8

Total 413 33535

637
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Figure 4:
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Figure 5:
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