Hydrological Summary for the United Kingdom

Abstract

General November began with mild, boisterous and wet autumnal weather conditions but synoptic patterns produced very much colder weather over the final week. High flows, with modest floodplain inundations, were common during the first fortnight but steep recessions then became established in most rivers. As usual in November, reservoir stocks increased briskly in most western and northern areas and, despite some essential drawdown to moderate the flood risk, overall stocks for England and Wales were appreciably above average in early December. Importantly however, stocks continued to decline in a few South Eastern impoundments (e.g. Bewl) and, reflecting rainfall deficiencies over the post Oct-2004 period, remain seasonally low in the drought affected regions. Groundwater recharge during November was generally healthy in the west and north but the absence of a significant recovery in large parts of the eastern Chalk has resulted in very meagre flows in spring-fed streams, and reinforced the drought's focus on the South East. For much the greater part of the UK the water resources outlook is healthy but in parts of southern and central England the winter and early spring rainfall will need to be appreciably above average to allay concern about water supply and environmental stress in the summer of 2006.

Rainfall

Synoptic patterns in November were initially cyclonic, bringing substantial rainfall on a westerly/south westerly airflow. Upland western catchments were especially wet - Capel Curig (north Wales) recorded around 200 mm in 7 days - but from around the $11^{\text {th }}$, high pressure predominated until the final week when frontal incursions brought an Arctic airflow across most of the UK. The associated snowfall (reaching Cornwall on the $25^{\text {th }}$) caused massive transport disruption - 270 schools were closed in Wales on the $27^{\text {th }}$. However, in a few parts of the English Lowlands precipitation was largely restricted to fog-drip over the latter half of the month. November precipitation totals exhibited large spatial variations, but generally exceeded the average in a broad band from the South West to eastern Scotland where, locally, totals exceeded twice the monthly average (e.g. in parts of the Grampians). By contrast, Northern Ireland and south western Scotland were relatively dry and, of greater water resources significance, below average totals characterised much of the English Lowlands; parts of Kent registered $<40 \%$. Autumn (Sep-Nov) rainfall totals were moderately above average in most regions but, unhelpfully in relation to the drought, the driest areas (reporting $<80 \%$) were in the South East. Here, a number of catchments have registered only one or two months with above average rainfall since October 2004. In this 13 -month timespan, the E\&W rainfall total is the $3^{\text {rd }}$ driest since 1975/76 (1988/89 and 1995/96 were drier). More significantly, large parts of the South-East registered their $2^{\text {nd }}$ lowest total (after 1988/ 89) since $1933 / 34$; with the greater part of the overall deficiency built up during the winter months the impact on runoff and aquifer recharge has been substantial.

River Flows

November flows exhibited a very wide range especially in responsive catchments. The late October recovery in runoff continued; spate conditions and Flood Warnings were common during the first 10 days - culminating on the $9^{\text {th }}$ when the Rivers Gwilli and Dewi Fawr (in South Wales) both registered their highest levels on record. Flooding was locally severe (e.g. in Haverfordwest) and the saturated soils triggered a number of landslides (e.g. near Bethesda and Ebbw Vale). On the Severn,
demountable flood barriers were employed at Bewdley and Worcester. More generally, storm debris and leaffall contributed to local drainage problems. From midmonth, recessions were steep - aided by frozen upland catchments - and, by month end, flows were approaching early winter minima (e.g. in the Forth) in many responsive catchments. After many months (31 for the Lambourn) of below average flows, runoff rates in many spring-fed streams were also depressed. Such impermeable catchments aside, November runoff totals were mostly within the normal range. A more revealing picture of the drought's persistence and severity is provided by the runoff accumulations since October 2004. Deficiencies of well over 30% characterise many southern and central catchments, and are unprecedented for a few rivers in the South-East (e.g. the Medway and Sussex Ouse).

Groundwater

With November rainfall favouring the west and north, where soils were close to saturation, substantial infiltration produced strong groundwater level recoveries in most sandstone and limestone aquifers (levels increased by $>20 \mathrm{~m}$ at Alstonfield). Very helpful recoveries were also registered in much of the western Chalk (e.g. at Ashton Farm and West Woodyates). But no seasonal upturn was evident during November in much of the central and eastern Chalk outcrops - or for some Permo-Triassic sandstones aquifer units - where soil moisture deficits mostly remained above average in late November. Although November groundwater levels at most index wells were in the normal range, continuing recessions have left notably low levels in the Permo-Triassic sandstones of the Midlands and in parts of the central and eastern Chalk. At the Redlands, Stonor and Little Bucket index wells November levels were seasonally depressed, and close to drought minima. For the Chalk as a whole there has been a modest increase in groundwater resources since October when overall resources were estimated at their lowest since the autumn of 1997. In order for groundwater to exercise a strong moderating influence on any potential summer drought (in the English Lowlands) in 2006, above average rainfall will be needed over Dec-April period to help ensure that the 2006 recessions begins from nearaverage spring peaks.

Centre for
Ecology \& Hydrology
NATURAL ENVIRONMENT RESEARCH COUNCIL
British
Geological Survey

Rainfall

Rainfall accumulations and return period estimates

Area	Rainfall	Nov 2005	$\text { Sep } 05$	$\begin{gathered} \text { ov } 05 \\ R P \end{gathered}$	$\text { May } 0$	Nov 05 RP	Jan 05-	$\begin{gathered} \operatorname{Nov} 05 \\ R P \end{gathered}$	Nov	Nov 05 RP
England \& Wales	$\mathrm{mm}_{\%}$	$\begin{aligned} & 88 \\ & 95 \end{aligned}$	$\begin{aligned} & 282 \\ & 109 \end{aligned}$	2-5	$\begin{array}{r} 519 \\ 98 \end{array}$	2-5	$\begin{array}{r} 763 \\ 93 \end{array}$	2-5	$\begin{array}{r} 883 \\ 88 \end{array}$	5-10
North West	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 123 \\ 98 \end{array}$	$\begin{aligned} & 419 \\ & 113 \end{aligned}$	2-5	$\begin{array}{r} 718 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1086 \\ 100 \end{array}$	<2	$\begin{array}{r} 1300 \\ 97 \end{array}$	2-5
Northumbrian	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 94 \\ 109 \end{array}$	$\begin{aligned} & 303 \\ & 128 \end{aligned}$	$5-10$	$\begin{aligned} & 547 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 885 \\ & 113 \end{aligned}$	$5-10$	$\begin{aligned} & 979 \\ & 103 \end{aligned}$	2-5
Severn Trent	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 69 \\ & 97 \end{aligned}$	$\begin{aligned} & 226 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 440 \\ 98 \end{array}$	2-5	$\begin{array}{r} 634 \\ 92 \end{array}$	2-5	$\begin{array}{r} 721 \\ 86 \end{array}$	$5-10$
Yorkshire	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{array}{r} 83 \\ 102 \end{array}$	$\begin{aligned} & 254 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 476 \\ 98 \end{array}$	2-5	$\begin{array}{r} 736 \\ 98 \end{array}$	2-5	$\begin{array}{r} 823 \\ 90 \end{array}$	2-5
Anglian	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 40 \\ & 68 \end{aligned}$	$\begin{aligned} & 168 \\ & 105 \end{aligned}$	2-5	$\begin{aligned} & 384 \\ & 105 \end{aligned}$	2-5	$\begin{array}{r} 522 \\ 95 \end{array}$	2-5	$\begin{array}{r} 592 \\ 89 \end{array}$	2-5
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 52 \\ & 79 \end{aligned}$	$\begin{array}{r} 186 \\ 98 \end{array}$	2-5	$\begin{array}{r} 360 \\ 88 \end{array}$	2-5	$\begin{array}{r} 510 \\ 81 \end{array}$	$5-10$	$\begin{array}{r} 596 \\ 78 \end{array}$	10-20
Southern	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 49 \\ & 58 \end{aligned}$	$\begin{array}{r} 184 \\ 78 \end{array}$	2-5	$\begin{array}{r} 365 \\ 81 \end{array}$	$5-10$	$\begin{array}{r} 531 \\ 76 \end{array}$	10-20	$\begin{array}{r} 627 \\ 72 \end{array}$	30-40
Wessex	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 74 \\ & 88 \end{aligned}$	$\begin{array}{r} 235 \\ 98 \end{array}$	2-5	$\begin{array}{r} 454 \\ 95 \end{array}$	2-5	$\begin{array}{r} 664 \\ 88 \end{array}$	2-5	$\begin{array}{r} 773 \\ 82 \end{array}$	$5-10$
South West	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 138 \\ & 108 \end{aligned}$	$\begin{aligned} & 385 \\ & 114 \end{aligned}$	2-5	$\begin{aligned} & 654 \\ & 102 \end{aligned}$	2-5	$\begin{array}{r} 966 \\ 92 \end{array}$	2-5	$\begin{array}{r} 1132 \\ 86 \end{array}$	$5-10$
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 160 \\ & 111 \end{aligned}$	$\begin{aligned} & 461 \\ & 115 \end{aligned}$	2-5	$\begin{array}{r} 748 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1122 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1335 \\ 90 \end{array}$	2-5
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 171 \\ & 109 \end{aligned}$	$\begin{aligned} & 494 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 894 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1479 \\ 112 \end{array}$	5-10	$\begin{array}{r} 1792 \\ 110 \end{array}$	5-10
Highland	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 242 \\ & 123 \end{aligned}$	$\begin{aligned} & 681 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 1114 \\ 113 \end{array}$	$5-10$	$\begin{array}{r} 1887 \\ 122 \end{array}$	25-35	$\begin{array}{r} 2349 \\ 121 \end{array}$	30-40
North East	mm	$\begin{aligned} & 147 \\ & 142 \end{aligned}$	$\begin{aligned} & 330 \\ & 110 \end{aligned}$	2-5	$\begin{aligned} & 634 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1008 \\ 108 \end{array}$	2-5	$\begin{array}{r} 1163 \\ 103 \end{array}$	2-5
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 149 \\ & 117 \end{aligned}$	$\begin{aligned} & 423 \\ & 110 \end{aligned}$	2-5	$\begin{aligned} & 756 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1287 \\ 1 \mid 1 \end{array}$	2-5	$\begin{array}{r} 1472 \\ 104 \end{array}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 100 \\ 86 \end{array}$	$\begin{array}{r} 347 \\ 99 \end{array}$	2-5	$\begin{array}{r} 648 \\ 96 \end{array}$	2-5	$\begin{array}{r} 1120 \\ 109 \end{array}$	2-5	$\begin{array}{r} 1297 \\ 103 \end{array}$	2-5
Tweed	mm	$\begin{aligned} & 95 \\ & 98 \end{aligned}$	$\begin{aligned} & 349 \\ & 121 \end{aligned}$	$5-10$	$\begin{aligned} & 599 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 973 \\ & 107 \end{aligned}$	2-5	$\begin{array}{r} 1085 \\ 99 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 132 \\ 91 \end{array}$	$\begin{aligned} & 493 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 818 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1305 \\ 101 \end{array}$	2-5	$\begin{array}{r} 1552 \\ 98 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 154 \\ 83 \end{array}$	$\begin{array}{r} 537 \\ 95 \end{array}$	2-5	$\begin{array}{r} 1003 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1645 \\ 105 \end{array}$	2-5	$\begin{array}{r} 2040 \\ 105 \end{array}$	2-5
Northern Ireland	$\mathrm{mm}_{\%}$	$\begin{aligned} & 79 \\ & 74 \end{aligned}$	$\begin{array}{r} 305 \\ 95 \end{array}$	2-5	$\begin{array}{r} 579 \\ 91 \end{array}$	2-5	$\begin{array}{r} 943 \\ 95 \end{array}$	2-5	$\begin{array}{r} 1111 \\ 92 \end{array}$	2-5

\% = percentage of 1961-90 average
RP = Return period

Rainfall . . . Rainfall

Key

00\%	Percentage of
196\|-90 average	

Very wet

Substantially above average

Above average

September 2005 - November 2005
November 2004 - November 2005

Rainfall accumulation maps

The Sept-Nov rainfall for the UK added to a cluster of recent wet autumns; eight of the last nine have registered above average rainfall. North-eastern England was especially wet, recording its highest autumn rainfall since 1984. Reflecting the preferred tracks of most Atlantic low pressure systems since the autumn of 2004, accumulated rainfall totals for northern Scotland are also notably wet (the Nov-2004 to Nov-2005 total vying with 1991/92 as the wettest in a series from 1914). The relative paucity of frontal rainfall over the 13 -month period is very evident across southern England where deficiencies similar to that of Southern Region would be expected, on average, only once every 30-40 years.

River flow . . . River flow

River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to December 2004 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

River	\%lta	Rank		River \quad \%	\%lta	Rank		River	\%lta	Rank
Mimram	54	4/53	b)	Soar	55	3/34	c)	Mole	56	1/29
Kennet	64	6/44		Thames (naturalised)	57	10/123		Medway	35	1/42
Lambourn	68	3/43		Coln	62	4/42		Ouse (Gold Bridge)	40	1/40
Medway	31	9/44		Wallington	43	2/50		Otter	69	2/43
Test	67	4/48		Test	63	3/47		Ewe	125	34/35
Avon (Amesbury)	57	5/41		Itchen	72	4/47		Faughan	76	2/29
Faughan	63	4/30		Tone	71	4/44		L Bann	77	2/25

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater... Groundwater

Groundwater levels November/ December 2005
Borehole
Dalton Holme
Washpit Farm
Stonor Park
Dial Farm
Rockley
Little Bucket Farm
West Woodyates

Level	Date	Nov. av.
12.88	$15 / 11$	14.81
42.99	$05 / 12$	43.30
62.97	$29 / 11$	72.60
25.17	$14 / 11$	25.45
130.43	$29 / 11$	131.61
58.80	$30 / 11$	63.19
75.75	$30 / 11$	81.01

Borehole
Chilgrove House
Killyglen
New Red Lion
Ampney Crucis
Newbridge
Skirwith
Brick House Farm

Groundwater . . Groundwater

Groundwater levels - November 2005

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly.

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	2005Aug	Sep	Oct	Nov	Dec	Avg. Dec	Min. Dec	Year*$\text { of } \mathrm{min} \text {. }$
North West	N Command Zone	- 124929	57	49	52	74	90	73	44	1993
	Vyrnwy	55146	75	63	56	82	88	79	33	1995
Northumbrian	Teesdale	- 87936	77	69	73	85	91	75	39	1995
	Kielder	(199175)	(87)	(89)	(86)	(98)	(91)	(85)	(64)	2003
Severn Trent	Clywedog	44922	87	76	70	82	82	79	43	1995
	DerwentValley	- 39525	72	60	55	75	86	76	9	1995
Yorkshire	Washburn	- 22035	62	57	57	69	79	69	16	1995
	Bradford supply	- 41407	70	57	55	65	80	78	20	1995
Anglian	Grafham	(55490)	(86)	(82)	(80)	(79)	(81)	(81)	(47)	1997
	Rutland	(116580)	(85)	(82)	(76)	(73)	(73)	(79)	(57)	1995
Thames	London	- 202406	80	74	65	65	80	79	52	1990
	Farmoor	- 13822	99	98	98	100	99	90	52	1990
Southern	Bewl	28170	61	54	44	39	36	65	34	1990
	Ardingly	4685	65	56	47	44	50	75	23	2003
Wessex	Clatworthy	5364	80	66	53	55	92	76	16	2003
	BristolWW	- (38666)	(65)	(55)	(47)	(47)	(59)	(65)	(27)	1990
South West	Colliford	28540	62	54	45	46	51	72	42	1995
	Roadford	34500	66	58	53	57	63	72	19	1995
	Wimbleball	21320	83	74	61	62	73	72	34	1995
	Stithians	5205	67	54	41	43	64	64	29	2001
Welsh	Celyn and Brenig	- 131155	86	78	77	87	95	84	50	1995
	Brianne	62140	93	88	82	99	92	95	72	1995
	Big Five	- 69762	73	62	54	75	87	79	49	1990
	Elan Valley	- 99106	75	67	64	83	98	92	47	1995
Scotland(E)	Edinburgh/Mid Lothian	- 97639	85	74	72	80	94	83	45	2003
	East Lothian	- 10206	90	78	66	72	93	85	38	2003
Scotland(W)	Loch Katrine	- 111363	73	67	81	95	88	91	66	2003
	Daer	22412	80	69	69	100	98	96	73	2003
	Loch Thom	- 11840	100	100	87	87	100	93	72	2003
Northern	Total ${ }^{+}$	- 67270	75	71	65	80	85	82	59	2003
Ireland	Silent Valley	- 20634	74	65	64	82	92	72	43	2001

() figures in parentheses relate to gross storage - denotes reservoir groups ${ }^{+}$excludes Lough Neagh *last occurrence - see footnote

[^0]
Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX1 3PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB
Tel.: 01491838800
Fax: 01491692424
E-mail: nwamail@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/ $01 / 97$) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.
Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

[^0]: Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The storage figures relate to the 1988-2005 period only (except for West of Scotland and Northern Ireland where data commence in the mid-1990's). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

