Hydrological Summary for the United Kingdom

General

With high pressure continuing to dominate synoptic patterns in early April, drought conditions intensified across southern Britain, triggering the introduction of a sprinkler and unattended hosepipe ban by Sutton and East Surrey Water. Despite an unsettled latter half of the month, April rainfall totals were again below average in many of the drought affected catchments. The provisional Nov-Apr rainfall total for E\&W is the $2^{\text {nd }}$ lowest since 1953/54, (1996/97 was similar and 1975/76 was substantially drier) and 6-month rainfall deficiencies are severe across much of the English Lowlands - where, in some areas, the margin between available resources and water demand is particularly narrow. The late April rainfall was very timely, providing a modest boost to reservoir stocks and a late pulse of groundwater recharge in some areas. Stocks in a number of southern reservoirs are appreciably below average (although mostly well above drought minima) but a little above the late spring average for England and Wales as a whole. Groundwater levels are depressed in some responsive southern outcrops but mostly still within the normal range further north. Accelerating evaporation rates are likely to curtail the recharge season very shortly - heralding very low flows, with accompanying environmental stress in spring-fed streams during the coming summer.

Rainfall

Much of the April rainfall was showery or convective in nature and the varying tracks of the frontal systems which crossed the UK also contributed to substantial spatial variability. There were a few notable storms: Newcastle reported 74 mm in around 48 hrs on the $15 / 16^{\text {th }}$ and rainfall during the $24-27^{\text {th }}$ was especially useful in the South. Nonetheless, April rainfall totals failed to reach the average across most of the English Lowlands with totals $<70 \%$ in parts of London. To the west and north, rainfall totals were generally much healthier with totals exceeding twice the average in parts of the southern Pennines and Scottish Highlands. Broadly, the result of the April rainfall was to reinforce the regional character of the drought, which is focussed on southern and central England. In these regions many catchments have registered six successive months with below average rainfall. Correspondingly, accumulated deficiencies are notably high over wide areas. The Nov-Apr rainfall for E\&W was around 75% of average but totals fall below 65% in parts of the South - provisional data suggest that some southern catchments (mostly from Sussex to Dorset) experienced their second driest winter and early spring on record. The preferred tracks of Atlantic frontal systems over this period may be inferred from the exceptionally high 6-month rainfall total registered by the Highland Region in Scotland.

River Flows

April flow patterns were typical of the spring across most of northern Britain and Northern Ireland, with significant spates in a few catchments - the River Leven (Cleveland) eclipsed its previous maximum April flow on the $16^{\text {th }}$ and in Wales, on the $18^{\text {th }}$, a Flood Warning was issued on the Vyrnwy. By contrast, recessions continued in the English Lowlands with flows in some responsive southern rivers approaching April minima in mid-month. Despite subsequent modest flow recoveries, April runoff totals were $<50 \%$ of average in some rivers (e.g. the Sussex Ouse) and the Piddle (Dorset) reported its $3^{\text {rd }}$ lowest April runoff (after 1976 and 1973) in a 42-yr record. The severity of the
drought is best characterised by runoff totals over the last 6 months. Several rivers draining to the English Channel - including the Exe and Wallington (Hants), both with records of around 50 yrs - reported their second lowest Nov-Apr runoff after the benchmark drought of 1975/76; for the Sussex Ouse the accumulated runoff total was the lowest on record. The virtual absence of any winter recovery in many southern Chalk streams foreshadows notably depressed summer flows. Elsewhere, some substantial Nov-Apr runoff deficiencies were reported (e.g. for the Yscir and Annacloy) but generally the 6 -month totals were in the normal range, and considerably above average in much of Scotland where the Spey registered its $3^{\text {rd }}$ highest total in a $53-\mathrm{yr}$ series.

Groundwater

Although soil moisture deficits began to build in early April, heavy rainfall during the latter half of the month provided a late pulse of infiltration at a time when groundwater levels (in the lowlands) are normally in recession. Minor groundwater level recoveries or, more likely, inflections in the recessions should be evident on some of the May hydrographs for the index boreholes. The April groundwater levels testify to the drought's severity in the South - at Chilgrove they were the lowest, for the month, since 1976 and rank $8^{\text {th }}$ lowest in a $170-\mathrm{yr}$ record. Depressed levels characterize much of the southern Chalk and the Permo-Triassic sandstones in the South-West. To the north, the drought's impact is less severe. A combination of higher rainfall and, in many cases, longer aquifer response times, has left groundwater levels in most areas within the normal range, albeit below average in many areas - the limestone outcrops particularly. In all but the slowest-responding aquifer units, accelerating evaporation rates during May should ensure that that the seasonal recession in groundwater levels becomes well established - having begun from the lowest spring maximum in at least eight years over wide areas.

Centre for
Ecology \& Hydrology

Rainfall accumulations and return period estimates

Area	Rainfall	Apr 2005	$\text { Jan } 05$	$\begin{gathered} \text { or } 05 \\ R P \end{gathered}$		$\begin{gathered} 4-A p r \\ R P \end{gathered}$	$\text { Sep } 04$	$\underset{R P}{A p r} 05$	May	$\begin{array}{r} \text { Apr } 05 \\ R P \end{array}$
England \& Wales	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 78 \\ 127 \end{array}$	$\begin{array}{r} 243 \\ 83 \end{array}$	2-5	$\begin{array}{r} 363 \\ 76 \end{array}$	5-15	$\begin{array}{r} 568 \\ 88 \end{array}$	2-5	$\begin{array}{r} 906 \\ 99 \end{array}$	2-5
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 108 \\ & 152 \end{aligned}$	$\begin{aligned} & 366 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 580 \\ 94 \end{array}$	2-5	$\begin{aligned} & 882 \\ & 102 \end{aligned}$	2-5	$\begin{array}{r} 1324 \\ 109 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 104 \\ & 181 \end{aligned}$	$\begin{aligned} & 326 \\ & 120 \end{aligned}$	$5-10$	$\begin{array}{r} 420 \\ 95 \end{array}$	2-5	$\begin{aligned} & 617 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1015 \\ 117 \end{array}$	5-15
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 59 \\ 106 \end{array}$	$\begin{array}{r} 193 \\ 79 \end{array}$	2-5	$\begin{array}{r} 281 \\ 71 \end{array}$	10-20	$\begin{array}{r} 460 \\ 88 \end{array}$	2-5	$\begin{aligned} & 769 \\ & 100 \end{aligned}$	<2
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 98 \\ 165 \end{array}$	$\begin{array}{r} 261 \\ 98 \end{array}$	2-5	$\begin{array}{r} 347 \\ 81 \end{array}$	5-10	$\begin{array}{r} 513 \\ 89 \end{array}$	2-5	$\begin{aligned} & 870 \\ & 104 \end{aligned}$	2-5
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 42 \\ & 91 \end{aligned}$	$\begin{array}{r} 139 \\ 76 \end{array}$	$5-10$	$\begin{array}{r} 209 \\ 71 \end{array}$	10-20	$\begin{array}{r} 333 \\ 84 \end{array}$	$5-10$	$\begin{aligned} & 617 \\ & 102 \end{aligned}$	2-5
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 49 \\ & 97 \end{aligned}$	$\begin{array}{r} 151 \\ 69 \end{array}$	5-15	$\begin{array}{r} 237 \\ 66 \end{array}$	10-20	$\begin{array}{r} 387 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 632 \\ 90 \end{array}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 51 \\ & 97 \end{aligned}$	$\begin{array}{r} 168 \\ 67 \end{array}$	5-15	$\begin{array}{r} 264 \\ 63 \end{array}$	20-35	$\begin{array}{r} 427 \\ 75 \end{array}$	$5-15$	$\begin{array}{r} 673 \\ 86 \end{array}$	5-10
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 75 \\ 141 \end{array}$	$\begin{array}{r} 209 \\ 75 \end{array}$	5-10	$\begin{array}{r} 318 \\ 69 \end{array}$	10-20	$\begin{array}{r} 522 \\ 85 \end{array}$	2-5	$\begin{array}{r} 760 \\ 89 \end{array}$	2-5
SouthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 99 \\ 142 \end{array}$	$\begin{array}{r} 290 \\ 71 \end{array}$	5-15	$\begin{array}{r} 457 \\ 67 \end{array}$	15-25	$\begin{array}{r} 726 \\ 81 \end{array}$	$5-10$	$\begin{array}{r} 1058 \\ 89 \end{array}$	2-5
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 109 \\ & 132 \end{aligned}$	$\begin{array}{r} 377 \\ 87 \end{array}$	2-5	$\begin{array}{r} 590 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 977 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1341 \\ 100 \end{array}$	<2
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 116 \\ & 144 \end{aligned}$	$\begin{aligned} & 588 \\ & 125 \end{aligned}$	5-15	$\begin{aligned} & 901 \\ & 115 \end{aligned}$	5-10	$\begin{array}{r} 1280 \\ 118 \end{array}$	5-15	$\begin{array}{r} 1736 \\ 118 \end{array}$	15-25
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 135 \\ & 144 \end{aligned}$	$\begin{aligned} & 796 \\ & 142 \end{aligned}$	5-15	$\begin{array}{r} 1257 \\ 132 \end{array}$	15-25	$\begin{array}{r} 1713 \\ 131 \end{array}$	30-50	$\begin{array}{r} 2187 \\ 126 \end{array}$	30-50
North East	mm	$\begin{array}{r} 80 \\ 118 \end{array}$	$\begin{aligned} & 378 \\ & 117 \end{aligned}$	2-5	$\begin{aligned} & 533 \\ & 102 \end{aligned}$	2-5	$\begin{aligned} & 782 \\ & 109 \end{aligned}$	2-5	$\begin{array}{r} 1173 \\ 114 \end{array}$	5-10
Tay	mm	$\begin{aligned} & 121 \\ & 177 \end{aligned}$	$\begin{aligned} & 531 \\ & 125 \end{aligned}$	$5-10$	$\begin{aligned} & 716 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1065 \\ 113 \end{array}$	2-5	$\begin{array}{r} 1554 \\ 121 \end{array}$	10-20
Forth	mm	$\begin{array}{r} 87 \\ 141 \end{array}$	$\begin{aligned} & 449 \\ & 125 \end{aligned}$	$5-10$	$\begin{aligned} & 626 \\ & 106 \end{aligned}$	2-5	$\begin{aligned} & 932 \\ & 113 \end{aligned}$	$5-10$	$\begin{array}{r} 1365 \\ 119 \end{array}$	10-20
Tweed	mm	$\begin{array}{r} 98 \\ 162 \end{array}$	$\begin{aligned} & 368 \\ & 118 \end{aligned}$	2-5	$\begin{array}{r} 481 \\ 95 \end{array}$	2-5	$\begin{array}{r} 744 \\ 107 \end{array}$	2-5	$\begin{array}{r} 1157 \\ 115 \end{array}$	5-10
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 128 \\ & 162 \end{aligned}$	$\begin{aligned} & 487 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 734 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1100 \\ 105 \end{array}$	2-5	$\begin{array}{r} 1550 \\ 108 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 123 \\ & 139 \end{aligned}$	$\begin{aligned} & 625 \\ & 113 \end{aligned}$	2-5	$\begin{array}{r} 1020 \\ 111 \end{array}$	2-5	$\begin{array}{r} 1478 \\ 113 \end{array}$	$5-10$	$\begin{array}{r} 2018 \\ 115 \end{array}$	10-20
Northern Ireland	$\underset{\%}{\text { mm }}$	$\begin{array}{r} 85 \\ 127 \end{array}$	$\begin{array}{r} 333 \\ 94 \end{array}$	2-5	$\begin{array}{r} 500 \\ 88 \end{array}$	2-5	$\begin{array}{r} 739 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1074 \\ 98 \end{array}$	2-5
	\% = perce	of 1961-90	erage						Return	eriod

The monthly rainfall figures* provided by the Met Office are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation. All monthly totals since December 2004 are provisional (see page 12). 1961-2003 regional monthly totals were revised by the Met Office in 2004. The figures for England \& Wales are derived by the Hadley Centre and are updates of the homogenised series developed by the Climate Research Unit; the other national figures are derived from different raingauge networks to those used to derive the CRU data series. Most of the return period estimates are based on tables provided by the Met Office (see Tabony, R. C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England and those for the Highland region take account of ranking positions. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts, in the Scottish rainfall series in particular, can exaggerate the relative wetness of the recent past. "See page 12 .

Rainfall . . . Rainfall . .

Key

Sery wet

November 2004 - April 2005
May 2004 - April 2005

Rainfall accumulation maps

The Nov-Apr regional rainfall totals testify to a notable exaggeration in the normal NW-SE rainfall gradient across the UK. Provisional data suggest that, in this timeframe, Southern Region recorded its 2nd lowest rainfall total in at least the last 50 years whilst the Highland Region registered its 3rd highest in a 45 -year series. Rainfall totals over the last 12 months confirm that, over this longer timespan, rainfall deficiencies are again most notable in southern England.

River flows - April 2005

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to May 2004 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. The 'national' hydrographs are based on representative networks of gauging stations commanding relatively large catchments.

River flow . . . River flow

River \quad	\%lta	Rank		River	\%lta	Rank	River	\%lta	Rank
Ness	129	30/33	b)	Spey (Boat o'Brig)	131	51/53	Stour	55	3/32
Tyne (Spilmersford)	d) 164	41/41		Trent	67	5/47	Exe	65	2/49
Dover Beck	54	4/29		Soar	46	3/34	Dart	67	3/47
Kennet	55	5/44		Mole	48	1/30	Kenwyn	52	2/37
Coln	55	5/42		Medway	32	2/45	Taw	69	4/47
Piddle	52	3/41		Ouse (Gold Bridge)) 37	1/41	Yscir	78	4/32
Warleggan	69	3/36		Wallington	38	2/52	Annacloy	73	3/25
Naver	133	24/28			6		$\begin{aligned} & \text { lta = long } \\ & \text { Rank } 1= \end{aligned}$		

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley 82.12 30/04

17.65 11/04 46.12 05/04 68.39 03/05 68.39 03/05 25.74 18/04 33.99 03/05
Borehole
Chilgrove House
Killyglen
New Red Lion
Ampney Crucis
Newbridge
Skirwith
Brick House Farm

Level	Date
42.26	$30 / 04$
114.84	$30 / 04$
14.28	$20 / 04$
101.59	$03 / 05$
9.99	$30 / 04$
130.73	$29 / 04$
11.63	$18 / 04$

Apr. av.
52.28
114.94
16.49
101.72
10.60
130.62
130.62

Borehole Morris Dancers Heathlanes
 Nuttalls Farm Bussels No.7a

Alstonfield

Groundwater. . . Groundwater

Groundwater levels - April 2005

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly

Reservoirs . . . Reservoirs

Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{gathered} 2005 \\ \text { Jan } \end{gathered}$	Feb	Mar	Apr	May	Avg. May	Min. May	$\begin{aligned} & \text { Year* } \\ & \text { of min. } \end{aligned}$
NorthWest	N Command Zone	- 124929	91	100	91	90	90	89	74	2003
	Vyrnwy	55146	100	99	97	97	98	92	70	1996
Northumbrian	Teesdale	- 87936	90	93	89	95	98	91	74	2003
	Kielder	(199175)	(98)	(91)	(90)	(91)	(93)	(91)	(85)	1990
SevernTrent	Clywedog	44922	83	79	89	94	100	96	85	1988
	DerwentValley	- 39525	100	99	95	99	100	92	54	1996
Yorkshire	Washburn	- 22035	90	86	83	80	85	90	76	1996
	Bradford supply	- 41407	99	99	94	98	100	90	60	1996
Anglian	Grafham	(55490)	(92)	(92)	(94)	(96)	(96)	(93)	(73)	1997
	Rutland	(116580)	(93)	(95)	(94)	(94)	(94)	(91)	(72)	1997
Thames	London	- 202340	87	91	95	96	99	94	86	1990
	Farmoor	- 13830	98	99	98	97	98	97	81	2000
Southern	Bewl	28170	60	70	75	86	85	90	63	1990
	Ardingly	4685	69	79	83	93	98	100	98	2005
Wessex	Clatworthy	5364	100	100	100	94	100	93	81	1990
	BristolWW	- (38666)	(64)	(77)	(83)	(82)	(85)	(94)	(85)	2005
South West	Colliford	28540	66	70	71	70	71	87	56	1997
	Roadford	34500	69	71	73	72	75	85	41	1996
	Wimbleball	21320	79	86	90	96	96	94	79	1992
	Stithians	5205	60	68	75	78	84	91	65	1992
Welsh	Celyn and Brenig	- 131155	97	97	98	100	100	97	75	1996
	Brianne	62140	98	94	96	97	100	97	86	1997
	Big Five	- 69762	97	98	96	97	96	93	85	1997
	Elan Valley	- 99106	100	99	98	99	99	97	87	2003
Scotland(E)	Edinburgh/Mid Lothian	- 97639	87	98	99	99	99	92	62	1998
	East Lothian	- 10206	100	100	100	100	100	98	89	1992
Scotland(W)	Loch Katrine	- 111363	100	89	86	91	97	93	83	2001
	Daer	22412	100	100	97	95	100	96	89	2003
	Loch Thom	- 11840	100	100	100	100	100	94	88	2003
Northern	Total ${ }^{+}$	- 67270	88	86	83	84	89	88	80	2003
Ireland	Silent Valley	- 20634	69	78	73	73	89	81	58	2000

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The storage figures relate to the 1988-2005 period only (except for West of Scotland and Northern Ireland where data commence in the mid-1990's). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with
them) should be regarded as a guide only.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax:0870 9005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB

Tel.: 01491838800
Fax: 01491692424
E-mail: nwamail@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.
Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

