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Abstract. Many different process-based models of ecosystems are in use today. The majority of 

these models are parameter-rich, deterministic dynamic models, which require considerable input 

information and computation time. These characteristics, combined with the fact that the models 

tend to be parameterised at the point-support spatial scale, have made their use for larger regions 

problematic. Quantifying the uncertainties caused by incomplete knowledge of model inputs and 

structure, as well as uncertainty due to upscaling, is a difficult task. Various examples of model 

application and uncertainty quantification are presented here and the possibility to use a Bayesian 

approach to uncertainty quantification is discussed. 

1 INTRODUCTION 

Process-based models (PBMs) are increasingly common tools for analysing and predicting 

the impact of environmental change on ecosystems (Ogle & Barber 2008). This reflects the 

realisation that ecosystems are dynamic systems that change over time in response to the 

environment. Here, we focus on PBMs that simulate the dynamics of soil-vegetation systems 

such as forests and crops. The possible applications of such PBMs depend on their input-

output relationships. A model‟s inputs include the environmental factors whose impacts can 

be assessed, whereas its outputs are the measures of ecosystem performance that we may be 

interested in. The environmental inputs that drive the models are atmospheric conditions, 

such as weather and CO2, and soil conditions, such as carbon, nitrogen and water content. 

The outputs from the models are time series of variables like productivity, carbon 

sequestration in soil and biomass, soil loss in erosion, and other variables that can be related 

to ecosystem services (Fig. 1). 

Most PBMs for forests and crops are complex deterministic simulators that are highly 

nonlinear. The models simulate the cycling of carbon, water and nutrients within vegetation 

and across the boundaries with soil and atmosphere. In contrast to hydrological models, 

ecosystem models focus on vertical transport, i.e. geographically they operate at point-

support. The PBMs are written as sets of differential equations which are solved numerically, 

making the models computationally demanding. For that reason, the application of PBMs to 

large, spatially heterogeneous areas has been difficult, but advances in computing capacity 

have made it possible to use PBMs for predicting the impact of regional and global 

environmental change. However, the uncertainties associated with such model applications 

have often not been quantified and analysed fully. Here, we shall review some recent work on 

PBM uncertainties and try to identify areas where more progress needs to be made. 

2  UNCERTAINTIES IN PROCESS-BASED MODELLING 

All uncertainty in the outputs of PBMs for any specific site derives from uncertainty about 

model structure and about model inputs. Uncertainty about the appropriate structure of 

ecosystem PBMs is large, as is evident from the large number of very different models that 

have been proposed in the literature. For example, the Register of Ecological Models (REM; 

http://ecobas.org/www-server) currently holds 78 forest models and 34 grassland models, and 

more can be found in the literature. The second type of uncertainty, about model inputs, is 
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Fig. 1. Common inputs (left) and outputs (right) from process-based ecosystem models.  

 

caused by incomplete knowledge of past and future weather conditions, inaccurate and 

imprecise soil maps, and poorly known process parameters and initialisation constants of the 

model‟s state variables. Levy et al. (2004) quantified the forward propagation of both 

structural and input uncertainty in forest modelling by feeding multiple PBMs with parameter 

values sampled from probability distributions that reflected the lack of unanimity in the 

literature. In their analysis, the structural and input uncertainties were so large that the use of 

PBMs to predict the impact on forests of atmospheric nitrogen deposition was severely 

limited. 

3 PBMS AND UNCERTAINTIES ABOUT SOIL VARIABLES 

Soil variables are essential inputs to ecosystem PBMs but soil knowledge is often limited, 

which poses several problems to the use of the models. 

 First, the way soils are represented in ecosystem PBMs does not always correspond to 

the variables that are actually measured. The most common problem is that of soil carbon 

pools. Total soil carbon can be fairly easily measured, but PBMs tend to subdivide soil 

organic carbon in pools of different turnover rate. A typical model subdivision consists of 

three pools: (1) a very slowly decomposing “recalcitrant” soil carbon pool, (2) a pool of soil 

organic matter that decomposes at intermediate rate, (3) a pool of litter that decomposes fast. 

Such pools are near-impossible to distinguish in measurement, so even when total carbon is 

well known, there is still uncertainty about the relative pool sizes. The impact on model 

performance of an incorrect assumption about carbon distribution over pools may be very 

large (Fig. 2; Yeluripati et al. 2009), and many modellers have resorted to “spinning-up”, i.e. 

pre-running the model to equilibrium, to stabilise the simulation of carbon dynamics. 

However, real ecosystems are generally not in equilibrium and a much better method than 

spinning-up may be to use Bayesian calibration to quantify the joint probability distribution 

for the three carbon pools (Yeluripati et al. 2009). 

 



 
Fig. 2. Forward propagation in time of uncertainty about relative magnitudes of grassland soil carbon pools. The 

model DAYCENT (Del Grosso et al. 2001) was run from a fixed total of 6500 g C m
-2

 at time = 0, but relative 

magnitudes of the three constituting soil C pools were varied according to prior uncertainty. A) Uncertainty 

about total soil C after 10 years of simulation. B) Uncertainty after 100 years. [After Yeluripati et al. 2009] 

 

 Secondly, in recent years ecosystem modellers have realised that soil information 

needs to include data on the nitrogen content of the soils, even in cases where the primary 

model application is to predict carbon dynamics. Modelling studies have shown that the 

response of ecosystems to environmental change is strongly dependent on the degree of 

nitrogen saturation of the soil (e.g. Van Oijen & Jandl 2004, Van Oijen et al. 2008). Most 

current ecosystem PBMs simulate the linkages between the carbon and nitrogen cycles in the 

soil-vegetation system. However, information on initial soil nitrogen pools is often lacking, 

or very poor in spatial resolution. Van Oijen & Thomson (in press) used nitrogen data from 

the global IGBP-DIS dataset to initialise soil nitrogen content across the U.K. for their 

process-based simulations of nationwide carbon sequestration. Bayesian calibration, using 

data from some well-researched forest sites, was used to quantify the parameter uncertainty. 

Output uncertainty was large and not proportional to the values of carbon sequestration itself 

(Fig. 3). Although this study demonstrated the effectiveness of the Bayesian approach for 

parameterisation of fairly complex forest PBMs, no effort was made to quantify the 

uncertainty associated with the soil nitrogen input data – as there was only one source of such 

data, the IGBP-DIS global dataset - although the relative insensitivity of the model to spatial 

variation in atmospheric N-deposition suggests that the soil data were overestimates. 

Uncertainty about the quality of such data strongly affects the confidence we can place in the 

application of ecosystem PBMs. 

Thirdly, there is the issue of scale, which affects both soil and atmospheric inputs. As 

described above, ecosystem PBMs are mostly point-support models. Therefore, in many 

applications of PBMs to problems that affect large geographical areas, the models are only 

applied to a finite number of specific sites that are considered to be representative of the area. 

In such methods, there is no true upscaling of the models, and model uncertainties can easily 

be quantified using Bayesian calibration which can be carried out for each site separately or 

for all sites simultaneously (Reinds et al. 2008, Lehuger et al. 2009). However, often there is 

a need for environmental assessment that covers not just a finite number of sites, but 

complete regions. When PBMs are applied across large regions, the approach tends to be to 

subdivide space in large matrices of grid cells, and run the models once for each grid cell 
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Figure 3: Process-based modeling of C-sequestration in the UK, 1920-2000. Cells are 20x20 km. Left: soil 

nitrogen content (source: IGBP-DIS). Mid: average annual C-sequestration simulated using forest model 

BASFOR. Right: uncertainty (S.D.) of outputs shown in mid panel. [Based on: Van Oijen & Thomson, in press] 

 

using as input the average conditions for that cell. In global modelling, the grid cells can be 

up to 100 by 200 km in size, and in continental modelling the grid cells are often 25 by 25 or 

50 by 50 km. Obviously, this approach raises uncertainty about the impact of space 

discretization and the use of cell-average inputs on model predictions. The following section 

(based on Van Oijen et al. 2009) discusses methods that have been used or proposed for 

upscaling of PBMs from the point support to the grid cell level. 

4 AN OVERVIEW OF METHODS FOR UPSCALING PROCESS-BASED MODELS 

Grid-cells used in spatial application of ecosystem PBMs often are larger than 20 by 20 km. 

The problem facing a „regional‟ (grid-cell level) user of point-support PBMs is that the 

models tend to be too slow to be run exhaustively across regions of such size, even if 

environmental information happens to be available for every point in the region. This 

problem can only be solved by working with approximations, of either region or model. This 

implies using some form of sampling and/or model simplification. We can distinguish seven 

methods, each described briefly in Table 1. 

 The example of Fig. 3 showed the most common approach to PBM upscaling: 

combining methods (1) and (3). Method (1) strictly requires reparameterisation of the PBM, 

using regional I-O data, but this is rarely done. An exception is the work of Patenaude et al. 

(2008), who calibrated the 3PG model using remotely sensed data from a small forested 

region. Recent years have seen an increasing abundance of data on structural characteristics 

of vegetation, measured by remote sensing, and on gas-fluxes, measured by eddy-covariance 

towers. This makes direct regional parameterisation increasingly possible. If the 

parameterisation is carried out using probabilistic techniques like Bayesian calibration 

(Patenaude et al. 2008), uncertainty quantification will be included.  

 The sampling-based methods (2)-(4) require uncertainty quantification to account for 

assumptions of representativeness of strata or control points. Recent developments in 

geostatistics may provide methodology. Bayesian kriging, for example, affords a means to 

quantify uncertainties comprehensively, including the uncertainty of the spatial interpolation 

parameters (Banerjee et al. 2004). 



Table 1: Methods for regional application of point-support process-based models. Each 

algorithm description ends with a line that shows how to calculate regional totals of model 

outputs. “y” is model output (stocks, fluxes, etc.) per unit area, “area” is the area of the 

region, “Total” is the integral of y across the regional area. 

Category Upscaling method Algorithm 

(1)-(3): 

Methods that 

use the 

original 

model 

 

 

 

 

(1) Reinterpret the 

point-support 

model as being a 

regional one 

1. Re-calibrate model for regional use 

2. Get average inputs for region 

3. Run model for average conditions 

4. Total = y * area 

 

(2) Select 

representative 

point 

1. Select a representative point 

2. Get inputs for point 

3. Run model for point 

4. Total = y * area 

 

(3) Stratify into 

homogeneous 

subregions 

1. Stratify the region 

2. Get average inputs per stratum 

3. Run model for all strata 

4. Total = (yi * areai) 

 

(4): 

Method in 

which the 

original 

model is 

extended 

 

(4) Run for selected 

points & 

interpolate 

1. Select control points 

2. Get inputs for control points 

3. Run model for control points 

4. Derive geostatistical interpolation 

model f 

5. Total = ∫y(s) where y(s) = f(y1..n, s1..n) 

 

(5)-(7): 

Methods that 

rely on 

making a 

new model 
 

(5) Create 

deterministic 

metamodel & 

apply exhaustively 

across the region 

1. Create fast metamodel using training 

set of multiple point-scale I-O 

2. Get inputs across whole region 

3. Run model for all points 

4. Total = mean(y) * area 

 

(6) Create stochastic 

emulator & apply 

exhaustively 

across the region 

1. Create fast emulator using training 

set of multiple point-scale I-O 

2-4. As Method (5) 

 

(7) Summarize model 

behaviour & 

embed in regional 

model with wider 

scope than point-

support model 

1. Summarise model behaviour in the 

form of a regional summary model 

2. Embed summary in regional model  

3. Run the regional model using 

regional-scale inputs 

4. Total = y * area 

  

 

 Methods (5)-(7) use new models that approximate the original PBM. Probabilistic 

frameworks for dealing with such „models of models‟ are still subject of intense research 

(Goldstein & Rougier 2009, Kennedy & O‟Hagan 2001), and there is not yet a generally 

accepted method. The debate is mainly about how to account for the discrepancy between 

models and reality. 



5 DISCUSSION 

We have given examples that show both the versatility of PBMs, and their limitations 

because of the high demands they put on the quality of input data, in particular on soils. 

Another limitation is persisting model structural uncertainty. Furthermore, the fact that PBMs 

tend to be too slow, computationally, to be run exhaustively across heterogeneous regions – 

necessitating the upscaling techniques discussed above – makes it hard to quantify upscaling 

uncertainty. There is a need for a practical probabilistic framework that produces PDFs for 

the regional model output, conditional on input distribution (environment and parameters), 

upscaling assumptions and upscaling method. Clearly, more work needs to be done on the 

quantification of uncertainty associated with upscaling. As we indicated at several places in 

our overview, Bayesian approaches have been successfully applied to quantify the 

uncertainties asscociated with model inputs and structure (Van Oijen et al. 2005), and we 

expect that they will also be increasingly applied to spatial modelling of PBMs. 
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